summaryrefslogtreecommitdiff
path: root/Dragon/src/MCGABG.f
blob: c724d04df91e9f8464d144e4b4be5d2b6788d525 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
*DECK MCGABG
      SUBROUTINE MCGABG(IPRINT,LFORW,PACA,N,LC,EPSM,MAXM,IM,MCU,JU,
     1                  DIAGF,CF,ILUDF,ILUCF,RHS,F,FAC,LC0,IM0,MCU0)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solve the ACA corrective system using BICGSTAB.
*
*Reference: (p382)
* MEURANT, G. 1999. "Computer Solution of Large Linear Systems".
* Studies in Mathematics and its Applications vol.28. North Holland.
* 776p.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Le Tellier
*
*Parameters: input
* IPRINT  print parameter.
* LFORW   flag set to .false. to transpose the coefficient matrix.
* PACA    type of preconditioner to solve the ACA corrective system.
* N       dimension of the corrective system.
* LC      dimension of profiled matrices MCU and CQ.
* IM      connection matrix.
* MCU     connection matrix.
* DIAGF   diagonal elements of the matrix to inverse.
* CF      non-diagonal elements of the matrix to inverse.
* RHS     right hand-side of the corrective system (already
*         preconditioned).
* FAC     scaling factor for precision.
* LC0     used in ILU0-ACA acceleration.
* IM0     used in ILU0-ACA acceleration.
* MCU0    used in ILU0-ACA acceleration.
* EPSM    stopping criterion.
* MAXM    maximum number of iterations allowed.
*
*Parameters: output
* F       corrective fluxes and currents.
*
*Parameters: scratch
* JU      undefined.
* ILUDF   undefined.
* ILUCF   undefined.
*
*-----------------------------------------------------------------------
*
      IMPLICIT NONE
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER IPRINT,PACA,N,LC,IM(N+1),MCU(LC),JU(N),MAXM,LC0,IM0(*),
     1 MCU0(*)
      REAL DIAGF(N),CF(LC),ILUDF(N),ILUCF(LC),EPSM,FAC
      DOUBLE PRECISION RHS(N),F(N)
      LOGICAL LFORW
*----
* LOCAL VARIABLE
*----
      REAL EPSMAX,EPSINF,EPS2
      PARAMETER (EPSMAX=1E-7)
      INTEGER I,J,ITER
      DOUBLE PRECISION R,BI,WI,RT1
      DOUBLE PRECISION DDOT,AUX(2),EPS,FNORM,RHSN,ASIN,ASIN2,SIN,CN,SQ2
      LOGICAL DEBUG
      INTRINSIC SQRT,ABS,SIGN
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: PI,RI,SI,ROT,API,
     1 ASI
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(PI(N),RI(N),SI(N),ROT(N),API(N),ASI(N))
*
      SQ2=1.D0/SQRT(2.D0)
*----
      DEBUG=.FALSE.
      EPSINF=EPSMAX*FAC
      ITER=0
*
      RHSN=0.0
      DO I=1,N
         RHSN=MAX(RHSN,ABS(RHS(I)))
      ENDDO
      IF(RHSN.LT.EPSINF) THEN
         DO I=1,N
            F(I)=0.0
         ENDDO
         IF(DEBUG) WRITE(6,200) RHSN,EPSINF
         GO TO 40
      ENDIF
      EPS2=EPSMAX*REAL(RHSN)
      EPS2=EPS2*EPS2
*---
*     initial corrective flux is set to rhs
*     calculate (P times (D times RHS)) -> RI
      CALL MCGPRA(LFORW,3,PACA,.FALSE.,N,LC,IM,MCU,JU,DIAGF,CF,ILUDF,
     1     ILUCF,DIAGF,RHS(1),RI,LC0,IM0,MCU0,CF)
      DO I=1,N
         F(I)=RHS(I)
         RI(I)=RHS(I)-RI(I)
         PI(I)=RI(I)
         ROT(I)=RI(I)
      ENDDO
      R=DDOT(N,RI,1,RI,1)
      FNORM=DDOT(N,F,1,F,1)
      EPS=SQRT(R/FNORM)
      IF(DEBUG) WRITE(6,100) ITER,EPS,EPSM
      IF(EPS.LE.EPSM) THEN
         IF(IPRINT.GT.2) WRITE(6,100) ITER,EPS,EPSM
         GO TO 40
      ENDIF
      AUX(1)=R
*     
      DO WHILE (ITER.LT.MAXM)
*     BiCGSTAB iterations
         ITER=ITER+1
*        calculate (P times (D times PI)) -> API
         CALL MCGPRA(LFORW,3,PACA,.FALSE.,N,LC,IM,MCU,JU,DIAGF,CF,
     1        ILUDF,ILUCF,DIAGF,PI(1),API,LC0,IM0,MCU0,CF)
*
         AUX(2)=AUX(1)/DDOT(N,API,1,ROT,1)
         DO J=1,N
            SI(J)=RI(J)-AUX(2)*API(J)
         ENDDO
         ITER=ITER+1
*        calculate (P times (D times SI)) -> ASI
         CALL MCGPRA(LFORW,3,PACA,.FALSE.,N,LC,IM,MCU,JU,DIAGF,CF,
     1        ILUDF,ILUCF,DIAGF,SI(1),ASI,LC0,IM0,MCU0,CF)
*
!!!!         ASIN=DDOT(N,ASI,1,ASI,1)
!!!!         ASIN2=DDOT(N,ASI,1,SI,1)
!!!!         IF(ASIN.GT.EPSMAX*ASIN2) THEN
!!!!            WI=ASIN2/ASIN
!!!!         ELSE
!!!!*        assuming lucky breakdown
!!!!            WI=1.0
!!!!         ENDIF
*        Modification proposed by Sleijpen and Van der Vorst (Numerical Algorithms, 10:203-223, 1995)
         ASIN2=DDOT(N,ASI,1,SI,1)
         ASIN=SQRT(DDOT(N,ASI,1,ASI,1))
         SIN=SQRT(DDOT(N,SI,1,SI,1))
         CN=ASIN*SIN
         IF(CN.GT.EPSMAX*ASIN2) THEN
            CN=ASIN2/CN
            WI=MAX(ABS(CN),SQ2)*SIN/ASIN
            WI=SIGN(WI,CN)
         ELSE
*        assuming lucky breakdown
            WI=1.0
         ENDIF           
*        calculate new iterate
         DO J=1,N
            F(J)=F(J)+AUX(2)*PI(J)+WI*SI(J)
            RI(J)=SI(J)-WI*ASI(J)
         ENDDO
         R=DDOT(N,RI,1,RI,1)
         FNORM=DDOT(N,F,1,F,1)
         IF(FNORM.LT.EPS2) GOTO 30
         EPS=SQRT(R/FNORM)
         IF(DEBUG) WRITE(6,100) ITER,EPS,EPSM
         IF(EPS.LE.EPSM) GO TO 20
         RT1=AUX(1)
         AUX(1)=DDOT(N,RI,1,ROT,1)
         BI=AUX(1)/RT1*AUX(2)/WI
         DO J=1,N
            PI(J)=RI(J)+BI*(PI(J)-WI*API(J))
         ENDDO
      ENDDO    
 20   CONTINUE
*     determine final residual norm
      ITER=ITER+1
*     calculate (P times (D times F)) -> RI
      CALL MCGPRA(LFORW,3,PACA,.FALSE.,N,LC,IM,MCU,JU,DIAGF,CF,ILUDF,
     1     ILUCF,DIAGF,F(1),RI,LC0,IM0,MCU0,CF)
      DO I=1,N
         RI(I)=RHS(I)-RI(I)
      ENDDO
*
      R=DDOT(N,RI,1,RI,1)
      FNORM=DDOT(N,F,1,F,1)
      IF(FNORM.LT.EPS2) GOTO 30
      EPS=SQRT(R/FNORM)
      IF(IPRINT.GT.2) WRITE(6,100) ITER,EPS,EPSM
!!!!      IF(EPS.GT.EPSM) THEN
!!!!         DO I=1,N
!!!!            PI(I)=RI(I)
!!!!            ROT(I)=RI(I)
!!!!         ENDDO 
!!!!         GO TO 10
!!!!      ENDIF
      GO TO 40
*
 30   IF(DEBUG) WRITE(6,300) ITER,FNORM,EPS2
      F(:N)=0.0
*----
*  SCRATCH STORAGE DEALLOCATION
*----
 40   DEALLOCATE(ASI,API,ROT,SI,RI,PI)
      RETURN
*
 100  FORMAT(12X,14H MCGABG: ITER=,I3,5H EPS=,E9.2,5H TAR=,E9.2)
 200  FORMAT(12X,27H MCGABG: RHS INFINITE NORM=,E9.2,5H LIM=,E9.2/
     1       12X,33H -> ACA CORRECTION IS SET TO ZERO)
 300  FORMAT(12X,14H MCGABG: ITER=,I3,7H FNORM=,E9.2,5H LIM=,E9.2)
      END