1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
*DECK M2TDRV
SUBROUTINE M2TDRV(IMPX,LOUT,IPMAC,NGRP,NBMIX,MAXMIX,NL,NBFIS,ICTR,
1 IGMAIL,BUP,TEMP,HBM,NBM)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Build an Apotrim interface file.
*
*Copyright:
* Copyright (C) 2007 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IMPX print index.
* LOUT Apotrim file unit number.
* IPMAC LCM pointer to the Macrolib.
* NGRP number of energy groups.
* NBMIX number of material mixtures in the Apotrim file.
* MAXMIX number of material mixtures in the Macrolib.
* NL maximum anisotropy level in the Apotrim file (=1 for
* isotropic collision in LAB).
* NBFIS maximum number of fissile isotopes in a mixture.
* ICTR flag set to 1 if the Apotrim xs are transport corrected.
* IGMAIL flag set to 1 to avoid writing the energy mesh on file.
* BUP burnup of each Apotrim mixture.
* TEMP temperature of each Apotrim mixture in Celsius.
* HBM name of material mixtures in the Apotrim file.
* NBM corresponding material mixtures indices in the Macrolib.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPMAC
INTEGER IMPX,LOUT,NGRP,NBMIX,MAXMIX,NL,NBFIS,ICTR,IGMAIL,
1 HBM(5,NBMIX),NBM(NBMIX)
REAL BUP(NBMIX),TEMP(NBMIX)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPMAC,KPMAC
CHARACTER TEXT20*20,FMTOUT*80,CM*2
PARAMETER(FMTOUT='(1P,6E13.5)',IOUT=6)
INTEGER FFAGGM,LLAGGM,FFDGGM,WWGALM,FFAGM,LLAGM,NNPSNM
*----
* ALLOCATABLE STATEMENTS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IFDG,IADR,IJJ,NJJ,IPOS
REAL, ALLOCATABLE, DIMENSION(:) :: GAR1,XTRAN,SIG,WORK,TRAN
REAL, ALLOCATABLE, DIMENSION(:,:) :: GAR2
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IFDG(NGRP),IADR(NGRP+1),IJJ(MAXMIX),NJJ(MAXMIX),
1 IPOS(MAXMIX))
ALLOCATE(GAR1(NGRP),GAR2(5,NGRP),XTRAN(NGRP*NGRP),SIG(MAXMIX),
1 WORK(NGRP*MAXMIX),TRAN(NGRP))
*----
* RECOVER THE ENERGY MESH
*----
IF(IGMAIL.EQ.0) THEN
CALL LCMGET(IPMAC,'ENERGY',GAR1)
DO 10 I=1,NGRP+1
GAR1(I)=1.0E-6*GAR1(I)
10 CONTINUE
WRITE(LOUT,'(2I8)') NBMIX,NGRP
WRITE(LOUT,FMTOUT) (GAR1(I),I=1,NGRP+1)
IF(IMPX.GE.1) THEN
WRITE(IOUT,4000) NBMIX,NGRP
WRITE(IOUT,4100) (GAR1(I),I=1,NGRP+1)
ENDIF
ENDIF
*----
* MIXTURE LOOP
*----
DO 100 IMED=1,NBMIX
WRITE(TEXT20,'(5A4)') (HBM(I0,IMED),I0=1,5)
IF(IMPX.GT.0) WRITE(IOUT,'(/25H M2TDRV: PROCESS MIXTURE ,A20)')
1 TEXT20
IBM=NBM(IMED)
JPMAC=LCMGID(IPMAC,'GROUP')
*----
* RECOVER FISSION INFORMATION
*----
LFIS=0
IF(NBFIS.EQ.1) THEN
DO 20 IGR=1,NGRP
KPMAC=LCMGIL(JPMAC,IGR)
CALL LCMLEN(KPMAC,'CHI',ILONG,ITYLCM)
IF(ILONG.GT.0) THEN
CALL LCMGET(KPMAC,'CHI',SIG)
GAR1(IGR)=SIG(IBM)
IF(GAR1(IGR).NE.0.0) LFIS=1
ELSE
GAR1(IGR)=0.0
ENDIF
20 CONTINUE
IF((LFIS.EQ.1).AND.(IMPX.GE.1)) THEN
WRITE(IOUT,1110)
WRITE(IOUT,4100) (GAR1(IGR),IGR=1,NGRP)
ENDIF
ENDIF
WRITE(LOUT,'(A20,2I5,3I3,2I10)') TEXT20,IMED,NGRP,LFIS,ICTR,NL-1,
1 NINT(TEMP(IMED)),NINT(BUP(IMED))
IF(LFIS.EQ.1) WRITE(LOUT,FMTOUT) (GAR1(IGR),IGR=1,NGRP)
*----
* RECOVER TRANSPORT CORRECTION
*----
IF(ICTR.GT.0) THEN
DO 25 IGR=1,NGRP
KPMAC=LCMGIL(JPMAC,IGR)
CALL LCMLEN(KPMAC,'TRANC',ILONG1,ITYLCM)
CALL LCMLEN(KPMAC,'SIGS01',ILONG2,ITYLCM)
IF(ILONG1.GT.0) THEN
CALL LCMGET(KPMAC,'TRANC',SIG)
TRAN(IGR)=SIG(IBM)
ELSE IF(ILONG2.GT.0) THEN
CALL LCMGET(KPMAC,'SIGS01',SIG)
TRAN(IGR)=SIG(IBM)
ELSE
TRAN(IGR)=0.0
ENDIF
25 CONTINUE
ENDIF
*----
* RECOVER REMAINING VECTOR XS INFORMATION
*----
IF(ICTR.EQ.0) THEN
IOF=0
NXS=4
ELSE
IOF=1
NXS=5
ENDIF
DO 30 IGR=1,NGRP
KPMAC=LCMGIL(JPMAC,IGR)
CALL LCMGET(KPMAC,'NTOT0',SIG)
GAR2(IOF+1,IGR)=SIG(IBM)
IF(ICTR.GT.0) THEN
GAR2(1,IGR)=TRAN(IGR)
GAR2(IOF+1,IGR)=GAR2(IOF+1,IGR)-TRAN(IGR)
ENDIF
GAR2(IOF+2,IGR)=SIG(IBM)
CALL LCMLEN(KPMAC,'SIGS00',ILONG,ITYLCM)
IF(ILONG.GT.0) THEN
CALL LCMGET(KPMAC,'SIGS00',SIG)
GAR2(IOF+2,IGR)=GAR2(IOF+2,IGR)-SIG(IBM)
ENDIF
CALL LCMLEN(KPMAC,'N2N',ILONG,ITYLCM)
IF(ILONG.GT.0) THEN
CALL LCMGET(KPMAC,'N2N',SIG)
GAR2(IOF+2,IGR)=GAR2(IOF+2,IGR)+SIG(IBM)
GAR2(IOF+4,IGR)=SIG(IBM)
ELSE
GAR2(IOF+4,IGR)=0.0
ENDIF
CALL LCMLEN(KPMAC,'N3N',ILONG,ITYLCM)
IF(ILONG.GT.0) THEN
CALL LCMGET(KPMAC,'N3N',SIG)
GAR2(IOF+2,IGR)=GAR2(IOF+2,IGR)+2.0*SIG(IBM)
GAR2(IOF+4,IGR)=GAR2(IOF+4,IGR)+2.0*SIG(IBM)
ENDIF
CALL LCMLEN(KPMAC,'N4N',ILONG,ITYLCM)
IF(ILONG.GT.0) THEN
CALL LCMGET(KPMAC,'N4N',SIG)
GAR2(IOF+2,IGR)=GAR2(IOF+2,IGR)+3.0*SIG(IBM)
GAR2(IOF+4,IGR)=GAR2(IOF+4,IGR)+3.0*SIG(IBM)
ENDIF
CALL LCMLEN(KPMAC,'NUSIGF',ILONG,ITYLCM)
IF(ILONG.GT.0) THEN
CALL LCMGET(KPMAC,'NUSIGF',SIG)
GAR2(IOF+3,IGR)=SIG(IBM)
ELSE
GAR2(IOF+3,IGR)=0.0
ENDIF
30 CONTINUE
WRITE(IOUT,4300) NL-1
DO 40 IGR=1,NGRP
WRITE(LOUT,FMTOUT) (GAR2(II,IGR),II=1,NXS)
40 CONTINUE
IF(IMPX.GE.1) THEN
WRITE(IOUT,1000)
DO 50 IGR=1,NGRP
WRITE(IOUT,'(8X,I7,1P,6E15.6)') IGR,(GAR2(II,IGR),II=1,NXS)
50 CONTINUE
ENDIF
*----
* RECOVER TRANSFER XS INFORMATION
*----
DO 90 INL=1,NL
WRITE (CM,'(I2.2)') INL-1
IADR(1)=1
NNPSNM=0
FFAGGM=NGRP+1
LLAGGM=0
FFDGGM=NGRP+1
WWGALM=0
FFAGM=1
LLAGM=NGRP
DO 70 IGR=1,NGRP
KPMAC=LCMGIL(JPMAC,IGR)
IFDG(IGR)=NGRP+1
CALL LCMGET(KPMAC,'IJJS'//CM,IJJ)
CALL LCMGET(KPMAC,'NJJS'//CM,NJJ)
CALL LCMGET(KPMAC,'IPOS'//CM,IPOS)
CALL LCMGET(KPMAC,'SCAT'//CM,WORK)
IF(ICTR.GT.0) THEN
IOF=IPOS(IBM)-IGR+IJJ(IBM)
WORK(IOF)=WORK(IOF)-TRAN(IGR)
ENDIF
IFDG(IGR)=MIN(IFDG(IGR),IJJ(IBM)-NJJ(IBM)+1)
IPO=IPOS(IBM)+NJJ(IBM)
DO 60 IB=1,NJJ(IBM)
NNPSNM=NNPSNM+1
XTRAN(NNPSNM)=WORK(IPO-IB)*REAL(2*INL-1)
60 CONTINUE
IADR(IGR+1)=IADR(IGR)+(IJJ(IBM)-IFDG(IGR)+1)
70 CONTINUE
WRITE(LOUT,'(A20,2I5,3I3,2I10)') TEXT20,IMED,NGRP,LFIS,ICTR,INL-1,
1 NINT(TEMP(IMED)),NINT(BUP(IMED))
WRITE(LOUT,'(8I8)') FFAGGM,LLAGGM,FFDGGM,WWGALM,FFAGM,LLAGM
WRITE(LOUT,'(8I8)') (IFDG(IGR),IGR=1,NGRP)
WRITE(LOUT,'(8I8)') (IADR(IGR),IGR=1,NGRP+1)
WRITE(LOUT,'(I10)') NNPSNM
WRITE(LOUT,FMTOUT) (XTRAN(II),II=1,NNPSNM)
IF(IMPX.GE.2) THEN
WRITE(IOUT,3000) INL-1
WRITE(IOUT,3050) FFAGGM,LLAGGM,FFDGGM,WWGALM,FFAGM,LLAGM,NNPSNM
WRITE(IOUT,3100)
WRITE(IOUT,4200) (IFDG(IGR),IGR=1,NGRP)
WRITE(IOUT,3200)
WRITE(IOUT,4200) (IADR(IGR),IGR=1,NGRP+1)
ENDIF
* PRINT TRANSFERT MATRICES ON LISTING, WIDLY AS THEY ARE CODED
* IN MACROLIB FOR IMPX.EQ.2, EXPLICITLY FOR IMPX.EQ.3
IF(IMPX.EQ.2) THEN
WRITE(IOUT,3300)
WRITE(IOUT,4100) (XTRAN(II),II=1,NNPSNM)
ENDIF
IF(IMPX.EQ.3) THEN
WRITE(IOUT,3300)
DO 85 IG=1,NGRP
DO 80 IGP=1,NGRP
SECT=0.0
IF((IG.GE.FFAGGM).AND.(IG.LE.LLAGGM).AND.
1 (IGP.GE.FFDGGM).AND.(IGP.LE.(FFDGGM+WWGALM-1))) THEN
SECT=XTRAN((IG-FFAGGM)*WWGALM+IGP-FFDGGM+1)
WRITE(IOUT,3060) IGP,IG,SECT
ELSE IF((IGP.GE.IFDG(IG)).AND.
1 (IGP.LE.(IADR(IG+1)-IADR(IG)+IFDG(IG)-1))
2 .AND.(IG.GE.FFAGM).AND.(IG.LE.LLAGM)) THEN
SECT=XTRAN(IADR(IG)+IGP-IFDG(IG))
WRITE(IOUT,3060) IGP,IG,SECT
ENDIF
80 CONTINUE
85 CONTINUE
ENDIF
90 CONTINUE
100 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(TRAN,WORK,SIG,XTRAN,GAR2,GAR1)
DEALLOCATE(IPOS,NJJ,IJJ,IADR,IFDG)
RETURN
*
1000 FORMAT (//29X,10(2H**)/29X,'** CROSS SECTIONS **'/29X,
1 10(2H**)//)
1110 FORMAT (//31X,10(2H**)/31X,'* FISSION SPECTRUM *',
1 /31X,10(2H**))
3000 FORMAT (//26X,15(2H**)/26X,'* P',I1,' TRANSFER CROSS SECTIONS *'/
1 26X,15(2H**)/)
3050 FORMAT (//10X,'FAGGM = ',I6,10X,'LAGGM = ',I6,10X,'FDGGM = ',I6
1 /10X,'WGALM = ',I6,10X,'FAGM = ',I6,10X,'LAGM = ',I6
2 /10X,'NPSNM = ',I10)
3060 FORMAT (1X,I3,' ==>',I3,1P,E13.5)
3100 FORMAT (//26X,6(2H**)/26X,'* FDGM *'/26X,6(2H**)/)
3200 FORMAT (//26X,6(2H**)/26X,'* IADM *'/26X,6(2H**)/)
3300 FORMAT (//26X,6(2H**)/26X,'* XTRAN *'/26X,6(2H**)/)
4000 FORMAT (//25X,11(3H***)/25X,'* NUMBER OF MIXTURES : ',I5,
1 ' *'/25X,'* ',I5,'-GROUP ENERGY MESH *'/25X,11(3H***))
4100 FORMAT (2X,1P,5E15.6)
4200 FORMAT (3X,5I10)
4300 FORMAT (//28X,13(2H**)/28X,'* ANISOTROPY LEVEL : P',I1,' *'/
1 28X,13(2H**))
END
|