1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
*DECK LIBSEC
SUBROUTINE LIBSEC(MAXTRA,LLL,IANNN,NGRO,IX,UUU,DELTA,SIGS,SIG1,
1 PRI,NLET,STR,DEL,NRSTR,IANIS,ITY,NEXT,NEXU,NEXV,NEXW,III)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the values of the transfer macroscopic cross section for
* secondary neutrons in group LLL. Component of the APOLIB-1 reader.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXTRA available storage for apollo compacted transfer
* cross sections.
* LLL group number for secondary neutrons.
* IANNN type of transport correction (=-1: transport corrected P0;
* =0: P0; =1: P1).
* NGRO number of groups.
* IX number of groups with up-scattering.
* UUU groups limits in lethargy units.
* DELTA groups width in lethargy units.
* SIGS diffusion P0 microscopic cross sections.
* SIG1 diffusion P1 microscopic cross sections.
* PRI transfer microscopic cross sections.
* DEL elementary mesh element in lethargy.
* NRSTR number of cross section structures own by the isotope.
* IANIS Legendre order corresponding to each cross section structure.
* ITY type of each cross section structure.
* NEXT length of each cross section structure.
* NEXU information related to each cross section structure.
* NEXV information related to each cross section structure.
* NEXW information related to each cross section structure.
* III offset in vector PRI of each cross section structure.
*
*Parameters: output
* NLET number of down-scattering groups (including group LLL).
* STR values of the transfer macroscopic cross section:
* STR(1) from group LLL;
* STR(2) from group LLL-1;
* STR(LLL) from group 1;
* STR(LLL+1) from group NGRO;
* STR(LLL+2) from group NGRO-1;
* STR(NGRO) from group LLL+1.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER MAXTRA,LLL,IANNN,NGRO,IX,NLET,NRSTR,IANIS(80),ITY(80),
1 NEXT(80),NEXU(80),NEXV(80),NEXW(80),III(80)
REAL UUU(NGRO),DELTA(NGRO),SIGS(NGRO),SIG1(NGRO),PRI(MAXTRA),
1 STR(NGRO),DEL
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION DAUX
LOGICAL SELF
EQUIVALENCE(AUX1,K12)
*
NGROIN=NGRO-IX
IAN=IANNN
IF(IANNN.EQ.-1)IAN=0
DO 71 MM=1,NGRO
STR(MM)=0.0
71 CONTINUE
NLET=1
SELF=.FALSE.
IF (NRSTR.GT.0) THEN
DO 250 K=1,NRSTR
IF (IANIS(K).NE.IAN) GOTO 250
MML=0
IF (ITY(K).EQ.1) THEN
* ELASTIC SLOWING-DOWN MATRIX.
IF (LLL.GT.NGROIN) GO TO 250
SELF=.TRUE.
LDELH=INT(UUU(LLL)/DEL+0.1)
LARGRL=INT(DELTA(LLL)/DEL+0.1)
LDELB=LDELH-LARGRL+1
NP2=NEXT(K)
IHM=III(K)+NP2-1
LTES=LDELB-NP2
ISOTOP=K
INDICE=1
DO 210 MM1=1,LLL
MM=LLL-MM1+1
MDELH=INT(UUU(MM)/DEL+0.1)
IF(MDELH.LE.LTES)GOTO 211
LARGRM=INT(DELTA(MM)/DEL+0.1)
MDELB=MDELH-LARGRM+1
MDELB=MAX0(MDELB,LTES+1)
DAUX=0.0
LARG=MIN0(LARGRM,LARGRL)
IF(LARG.GT.4) THEN
IHAUT=LDELH-MDELB+III(K)
IHAUT=MIN0(IHAUT,IHM)
J=0
INTER2=0
IF (INDICE.EQ.2) THEN
IBAS=LDELB-MDELH+III(K)
IBAS=MAX0(IBAS,III(K))
LARGLI=IABS(LARGRM-LARGRL)
INTER1=IBAS+LARG-2
INTER1=MIN0(INTER1,IHAUT)
DO 182 I=IBAS,INTER1
J=J+1
DAUX=DAUX+PRI(I)*FLOAT(J)
182 CONTINUE
INTER1=INTER1+1
INTER2=INTER1+LARGLI
INTER2=MIN0(IHAUT,INTER2)
IF(INTER1.GT.INTER2) GO TO 1004
J=LARG
DO 183 I=INTER1,INTER2
DAUX=DAUX+PRI(I)*FLOAT(LARG)
183 CONTINUE
ELSE IF (INDICE.EQ.1) THEN
INDICE=2
INTER2=III(K)-1
J=LARG+1
ENDIF
INTER2=INTER2+1
DO 184 I=INTER2,IHAUT
J=J-1
DAUX=DAUX+PRI(I)*FLOAT(J)
184 CONTINUE
ELSE
DO 83 MDEL=MDELB,MDELH
IBAS=LDELB-MDEL+III(K)
IHAUT=LDELH-MDEL+III(K)
IBAS=MAX0(IBAS,III(K))
IHAUT=MIN0(IHAUT,IHM)
DO 82 I=IBAS,IHAUT
DAUX=DAUX+PRI(I)
82 CONTINUE
83 CONTINUE
ENDIF
1004 STR(MM1)=STR(MM1)+REAL(DAUX*SIGS(MM)*DEL/DELTA(LLL))
210 CONTINUE
MM=MM-1
211 MML=LLL-MM
ELSE IF (ITY(K).EQ.4) THEN
* STANDARD GALOCHE.
IF (LLL.GT.NGROIN) GO TO 250
SELF=.TRUE.
NEX1=NEXU(K)
NEX2=NEXV(K)
NEX3=NEXW(K)
IF(LLL.GT.(NEX2+NEX3)) GO TO 801
IPR=III(K)-1+(LLL*(LLL-1))/2
DO 802 I=1,LLL
IPR=IPR+1
STR(I)=STR(I)+PRI(IPR)
802 CONTINUE
MML=LLL
GO TO 240
801 IF(LLL.GT.NEX1) GO TO 803
IPR=III(K)-1+LLL*(NEX2+NEX3)-((NEX2+NEX3)*(NEX2+NEX3+1))/2
DO 804 I=1,NEX2
IPR=IPR+1
STR(I)=STR(I)+PRI(IPR)
804 CONTINUE
LN3=LLL-NEX3+1
DO 807 I=LN3,LLL
IPR=IPR+1
STR(I)=STR(I)+PRI(IPR)
807 CONTINUE
MML=LLL
GO TO 240
803 IF(NEX2.EQ.0) GO TO 250
IPR=III(K)-1+NEX1*NEX3-((NEX2+NEX3)*(NEX2+NEX3-1))/2+
1 (LLL-1)*NEX2
DO 813 I=1,NEX2
IPR=IPR+1
STR(I)=STR(I)+PRI(IPR)
813 CONTINUE
MML=NEX2
ELSE IF (ITY(K).EQ.7) THEN
* THERMAL TRANSFER MATRIX.
IF (LLL.LE.NGROIN) GO TO 250
SELF=.TRUE.
IPR=III(K)-1+(NGRO-LLL)*IX
DO 5003 MM=1,LLL-NGROIN
STR(MM)=STR(MM)+PRI(IPR+MM+NGRO-LLL)
5003 CONTINUE
DO 5004 MM=1,NGRO-LLL
STR(MM+LLL)=STR(MM+LLL)+PRI(IPR+MM)
5004 CONTINUE
MML=LLL-NGROIN
ELSE IF (ITY(K).EQ.8) THEN
* RECTANGLE SLOWING-DOWN MATRIX.
IF(LLL.LT.NEXU(K))GO TO 250
IF(LLL.GT.NEXV(K))GO TO 250
IPR=III(K)-1+(LLL-NEXU(K))*NEXW(K)
LN1=LLL-NEXU(K)+2
DO 355 I=LN1,LN1+NEXW(K)-1
IPR=IPR+1
STR(I)=STR(I)+PRI(IPR)
355 CONTINUE
MML=NEXW(K)+LLL-NEXU(K)+1
ELSE IF (ITY(K).EQ.9) THEN
* GREULING-GOERTZEL SLOWING DOWN MATRIX.
NEX1=NEXU(K)
NEX3=NEXW(K)
IF ((LLL.LT.NEX1).OR.(LLL.GT.NEX3)) GO TO 250
SELF=.TRUE.
NEX2=NEXV(K)
NEX4=NEXT(K)/3
MML=LLL-NEX1+1
IPR=NEX3-LLL+III(K)-1
J=IPR+1+NEX4
DAUX=PRI(J)
J=IPR+1+2*NEX4
IF(LLL.GT.NEX2) THEN
LN1=LLL-NEX2+1
ELSE
LN1=1
STR(1)=STR(1)+PRI(J)
ENDIF
J=IPR+LN1-1
DO 360 MM=LN1,MML
J=J+1
STR(MM)=STR(MM)+REAL(PRI(J)*DAUX)
360 CONTINUE
ENDIF
240 NLET=MAX0(NLET,MML)
250 CONTINUE
ENDIF
IF ((.NOT.SELF).AND.(IAN.EQ.0)) THEN
STR(1)=STR(1)+SIGS(LLL)
ELSE IF ((.NOT.SELF).AND.(IAN.EQ.1)) THEN
STR(1)=STR(1)+3.0*SIG1(LLL)
ENDIF
IF (IANNN.EQ.-1) THEN
STR(1)=STR(1)-SIG1(LLL)
ENDIF
RETURN
END
|