summaryrefslogtreecommitdiff
path: root/Dragon/src/LIBRSE.f
blob: 541e404299f5605cb570a1b0915b8f11feddf784 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
*DECK LIBRSE
      SUBROUTINE LIBRSE(IPLIB,IPTMP,MAXTRA,HNAMIS,LBIN,NGRP,NL,NED,
     1 NDEL,HVECT,NFS,IMPX,DELI,AWR,IALTER,SVDEPS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Process snapshots for the resonance spectrum expansion method.
*
*Copyright:
* Copyright (C) 2023 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB   pointer to the isotopic directory in microlib.
* IPTMP   pointer to the multi-dilution internal library.
* MAXTRA  maximum number of energy bins of size DELI.
* HNAMIS  local name of the isotope:
*         HNAMIS(1:8)  is the local isotope name;
*         HNAMIS(9:12) is a suffix function of the mix number.
* LBIN    number of fine energy groups.
* NGRP    number of coarse energy groups.
* NL      number of Legendre orders required in the calculation
*         (NL=1 or higher).
* NED     number of extra vector edits.
* NDEL    number of delayed neutron precursor groups.
* HVECT   names of the extra vector edits.
* NFS     number of fine energy groups in each coarse energy group.
* IMPX    print flag (equal to zero for no print).
* DELI    elementary lethargy width.
* AWR     mass ratio for current isotope.
* IALTER  type of approximation (=0: use exponentials; =1: use Taylor
*         expansions).
* SVDEPS  rank accuracy of the singular value decomposition.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPLIB,IPTMP
      INTEGER MAXTRA,LBIN,NGRP,NL,NED,NDEL,NFS(NGRP),IMPX,IALTER
      REAL DELI,AWR,SVDEPS
      CHARACTER HNAMIS*12,HVECT(NED)*8
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) JPLIB1,JPLIB2,KPLIB,JPTMP,KPTMP
      PARAMETER (MAXITER=100,MAXNOR=12)
      CHARACTER TEXT12*12
      LOGICAL LGOLD,LRSE
      DOUBLE PRECISION DQQ,GAR0,GAR1(3),FFF
      CHARACTER(LEN=4),DIMENSION(4),PARAMETER ::
     1   HPART=(/'NWT0','NTOT','SIGF','SIGS'/)
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NJJ,MRANK
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: ISMIN,ISMAX,ISM
      REAL, ALLOCATABLE, DIMENSION(:) :: DELTAU,EBIN,UUU,DEL,STR,SIGS,
     1 SIGT,PRI,STIS,KSN,DILUT,DELTG,GOLD,SIGP
      REAL, ALLOCATABLE, DIMENSION(:,:) :: FLUX,TOTAL,SIGF
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: SIGSD,SADD,ZDEL
      REAL, ALLOCATABLE, DIMENSION(:,:,:,:) :: SCAT
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: W,PHIGAR,DGAR
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: V,XSDIL,TTT,DDD
      DOUBLE PRECISION, POINTER, DIMENSION(:,:) :: U,SSIGS,SSIGT
      LOGICAL, ALLOCATABLE, DIMENSION(:) :: LSCAT,LADD
      COMPLEX(KIND=8), ALLOCATABLE, DIMENSION(:,:) :: CT,CD
      TYPE VECTOR_ARRAY
        DOUBLE PRECISION, POINTER, DIMENSION(:) :: VECTOR
      END TYPE VECTOR_ARRAY
      TYPE MATRIX_ARRAY
        DOUBLE PRECISION, POINTER, DIMENSION(:,:) :: MATRIX
      END TYPE MATRIX_ARRAY
      TYPE(VECTOR_ARRAY), ALLOCATABLE, DIMENSION(:) :: UU_V,U_V,SIGT_V,
     1 WEIGHT_V,GAMMA_V
      TYPE(MATRIX_ARRAY), ALLOCATABLE, DIMENSION(:) :: PHI_M,DDD_M,U_M,
     1 V_M,SIGT_M,T_M,SIGP_M,EFF_M
      TYPE(MATRIX_ARRAY), ALLOCATABLE, DIMENSION(:,:) :: SCAT_M,TSCAT_M
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(NJJ(NGRP),MRANK(NGRP))
      ALLOCATE(EBIN(LBIN+1),UUU(LBIN+1),DEL(LBIN),STR(LBIN),SIGS(LBIN),
     1 SIGT(LBIN),PRI(MAXTRA),STIS(LBIN),EFF_M(NGRP),PHI_M(NGRP),
     2 UU_V(NGRP),U_V(NGRP),U_M(NGRP),V_M(NGRP),SIGT_M(NGRP),
     3 SCAT_M(NGRP,NGRP),T_M(NGRP),SIGT_V(NGRP),WEIGHT_V(NGRP),
     4 GAMMA_V(NGRP),TSCAT_M(NGRP,NGRP),SIGP_M(NGRP),ISM(2,NL))
      CALL LCMLEN(IPTMP,'ISOTOPESLIST',NDIL,ITYLCM)
      ALLOCATE(FLUX(NGRP,NDIL),TOTAL(NGRP,NDIL),SIGF(NGRP,NDIL),
     1 SIGSD(NGRP,NL,NDIL),SCAT(NGRP,NGRP,NL,NDIL),SADD(NGRP,NED,NDIL),
     2 ZDEL(NGRP,NDEL,NDIL),DELTG(NGRP),LSCAT(NL),LADD(NED),GOLD(NGRP),
     3 ISMIN(NL,NGRP),ISMAX(NL,NGRP))
*----
*  ALLOCATE DILUTION-DEPENDENT ARRAYS
*----
      ALLOCATE(DILUT(NDIL),KSN(NGRP*NDIL),DELTAU(NGRP))
      CALL LCMGET(IPTMP,'DELTAU',DELTAU)
      CALL LCMGET(IPTMP,'ISOTOPESDSN',KSN)
      DO IDIL=1,NDIL
        DILUT(IDIL)=KSN((IDIL-1)*NGRP+1)
      ENDDO
      DEALLOCATE(KSN)
      IF(IMPX.GT.2) THEN
        WRITE(6,'(/32H LIBRSE: DILUTIONS FOR ISOTOPE '',A12,2H'':)')
     1  HNAMIS
        WRITE(6,'(1X,1P,12E12.4)') DILUT(:NDIL)
      ENDIF
*----
*  RECOVER INFORMATION FROM *TEMPORARY* LCM OBJECT.
*----
      NDIL=NDIL-1
      CALL LIBEXT(IPTMP,NGRP,NL,NDIL,NED,HVECT,NDEL,.TRUE.,IMPX,DILUT,
     1 MDIL,LSCAT,LSIGF,LADD,LGOLD,FLUX,TOTAL,SIGF,SIGSD,SCAT,SADD,
     2 ZDEL,DELTG,GOLD,ISMIN,ISMAX)
      NDIL=NDIL+1
*----
*  COPY INFINITE DILUTION DATA FROM IPTMP TO IPLIB.
*----
      JPTMP=LCMGID(IPTMP,'ISOTOPESLIST')
      CALL LCMLEL(JPTMP,NDIL,ILENG,ITYLCM)
      IF(ILENG.EQ.0) THEN
        TEXT12=HNAMIS(1:8)
        WRITE(TEXT12(9:12),'(I4.4)') NDIL
        CALL XABORT('LIBRSE: MISSING LIST ITEM FOR '//TEXT12)
      ENDIF
      KPTMP=LCMGIL(JPTMP,NDIL) ! set NDIL-th isotope
      CALL LCMLEN(KPTMP,'LAMBDA-D',NDEL,ITYLCM)
      CALL LCMEQU(KPTMP,IPLIB)
*
*     DESTROY THE MULTI-DILUTION INTERNAL LIBRARY.
      CALL LCMCL(IPTMP,2)
*----
*  RECOVER AUTOLIB DATA.
*----
      CALL LCMGET(IPLIB,'BIN-ENERGY',EBIN)
      CALL LCMGET(IPLIB,'BIN-NTOT0',SIGT)
      CALL LCMGET(IPLIB,'BIN-SIGS00',SIGS)
*----
*  NULLIFY POINTERS
*----
      DO IG=1,NGRP
        NULLIFY(SIGT_M(IG)%MATRIX)
        DO JG=1,NGRP
          NULLIFY(SCAT_M(IG,JG)%MATRIX)
          NULLIFY(TSCAT_M(IG,JG)%MATRIX)
        ENDDO
      ENDDO
*----
*  ELASTIC SCATTERING INFORMATION USED TO REBUILD THE SCAT MATRIX.
*----
      IBIN=0
      DELMIN=1.0E10
      UUU(1)=0.0
      DO IG=1,NGRP
        FFF=0.0D0
        DO LI=1,NFS(IG)
          DELM=LOG(EBIN(IBIN+LI)/EBIN(IBIN+LI+1))
          UUU(IBIN+LI+1)=LOG(EBIN(1)/EBIN(IBIN+LI+1))
          DEL(IBIN+LI)=DELM
          DELMIN=MIN(DELMIN,DELM)
          FFF=FFF+DELM
        ENDDO
        FFF=DELTAU(IG)/FFF
        DEL(IBIN+1:IBIN+NFS(IG))=DEL(IBIN+1:IBIN+NFS(IG))*REAL(FFF)
        IBIN=IBIN+NFS(IG)
      ENDDO
      CALL LCMLEN(IPLIB,'BIN-DELI',LENGT,ITYLCM)
      IF((LENGT.EQ.1).AND.(ITYLCM.EQ.2)) THEN
        CALL LCMGET(IPLIB,'BIN-DELI',DELI)
      ELSE
        DELI=1.0/REAL(INT(1.00001/DELMIN))
      ENDIF
      PRI(:MAXTRA)=0.0
      CALL LIBPRI(MAXTRA,DELI,AWR,IALTER,0,NEXT,PRI)
*----
*  SOLVE FLUX CALCULATOR CASES FOR MANY DILUTIONS
*----
      LLL=0
      DO IG=1,NGRP
        LGBIN=NFS(IG)
        IF(LGBIN.EQ.0) CYCLE
        ALLOCATE(EFF_M(IG)%MATRIX(NDIL,3))
        ALLOCATE(PHI_M(IG)%MATRIX(NFS(IG),NDIL))
        LLL=LLL+LGBIN
      ENDDO
      ALLOCATE(PHIGAR(LBIN))
      DO IDIL=1,NDIL
        PHIGAR(:)=0.0D0
        LLL=0
        DO IG=1,NGRP
          IF(IMPX.GE.9) WRITE(6,'(29H LIBRSE: coarse energy group=,I8,
     1    10H dilution=,1P,E12.4)') IG,DILUT(IDIL)
          LGBIN=NFS(IG)
          IF(LGBIN.EQ.0) CYCLE
          LLL1=LLL
          GAR0=0.0D0
          GAR1(:3)=0.0D0
          DO LI=1,LGBIN
            LLL=LLL+1
            III=1
            STR(:LBIN)=0.0
            CALL LIBECT(MAXTRA,LLL,PRI,UUU(2),DELI,DEL,NEXT,III,MML,
     1      STIS)
            DO MM=1,MML
              STR(MM)=STR(MM)+STIS(MM)*SIGS(LLL-MM+1)
            ENDDO
            SIGMA=SIGT(LLL)-STR(1)
            DQQ=DILUT(IDIL)*DEL(LLL)
            DO MM=2,MIN(LLL,MML)
              DQQ=DQQ+STR(MM)*PHIGAR(LLL-MM+1)
            ENDDO
            PHIGAR(LLL)=DQQ/(DILUT(IDIL)+SIGMA)
            GAR0=GAR0+(UUU(LLL+1)-UUU(LLL))
            GAR1(1)=GAR1(1)+PHIGAR(LLL)
            GAR1(2)=GAR1(2)+SIGT(LLL)*PHIGAR(LLL)
            GAR1(3)=GAR1(3)+SIGS(LLL)*PHIGAR(LLL)
          ENDDO
          FFF=FLUX(IG,IDIL)*GAR0/GAR1(1)
          PHI_M(IG)%MATRIX(:LGBIN,IDIL)=PHIGAR(LLL1+1:LLL1+LGBIN)*FFF
          EFF_M(IG)%MATRIX(IDIL,:3)=GAR1(:3)*FFF/GAR0
        ENDDO
      ENDDO
      DEALLOCATE(PHIGAR)
*----
* LOOP OVER RESONANT GROUPS
*----
      MRANK(:NGRP)=0
      ALLOCATE(W(NDIL),V(NDIL,NDIL),DDD_M(NGRP))
      LLL=0
      DO IG=1,NGRP
        NJJ(IG)=0
        LRSE=(NFS(IG).GT.0).AND.(GOLD(IG).EQ.-1001.0)
        IF(.NOT.LRSE) CYCLE
        LGBIN=NFS(IG)
        ALLOCATE(U(LGBIN,NDIL))
        U(:LGBIN,:NDIL)=PHI_M(IG)%MATRIX(:LGBIN,:NDIL)
        !***************** SVD *****************
        CALL ALSVDF(U,LGBIN,NDIL,LGBIN,NDIL,W,V)
        !***************************************
        U_M(IG)%MATRIX=>U
        DO IDIL=1,NDIL
          IF(W(IDIL).LE.SVDEPS*DELI) THEN
            EXIT
          ELSE
            MRANK(IG)=MRANK(IG)+1
            IF(MRANK(IG).GT.20) CALL XABORT('LIBRSE: MRANK OVERFLOW.')
          ENDIF
        ENDDO
        MI=MRANK(IG)
        IF(MI.EQ.0) CYCLE
        ALLOCATE(V_M(IG)%MATRIX(NDIL,MI))
        DO IM=1,MI
          V_M(IG)%MATRIX(:NDIL,IM)=V(:NDIL,IM)/W(IM)
        ENDDO
        !
        ! compute UU_V and U_V
        ALLOCATE(UU_V(IG)%VECTOR(MI),U_V(IG)%VECTOR(MI))
        DO IMR1=1,MI
          UU_V(IG)%VECTOR(IMR1)=SUM(U_M(IG)%MATRIX(:LGBIN,IMR1))
          U_V(IG)%VECTOR(IMR1)=0.0D0
          DO LI=1,LGBIN
            U_V(IG)%VECTOR(IMR1)=U_V(IG)%VECTOR(IMR1)+DEL(LLL+LI)*
     1      U_M(IG)%MATRIX(LI,IMR1)
          ENDDO
        ENDDO
        !
        ! compute SIGT_M
        ALLOCATE(SSIGT(MI,MI))
        SSIGT(:,:)=0.0D0
        DO LI=1,LGBIN
          SIGMA=SIGT(LLL+LI)
          DO IMR1=1,MI
            DO IMR2=1,MI
              SSIGT(IMR1,IMR2)=SSIGT(IMR1,IMR2)+U_M(IG)%MATRIX(LI,IMR1)*
     1        SIGMA*U_M(IG)%MATRIX(LI,IMR2)
            ENDDO
          ENDDO
        ENDDO
        SIGT_M(IG)%MATRIX=>SSIGT
        NULLIFY(SSIGT)
        !
        ! compute SCAT_M
        DO JG=1,NGRP
          NULLIFY(DDD_M(JG)%MATRIX)
        ENDDO
        DO LI=1,LGBIN
          III=1
          STR(:LBIN)=0.0
          CALL LIBECT(MAXTRA,LLL+LI,PRI,UUU(2),DELI,DEL,NEXT,III,MML,
     1    STIS)
          DO MM=1,MML
            LLJ=LLL+LI-MM+1
            STR(LLJ)=STIS(MM)*SIGS(LLJ)
          ENDDO
          LLJ=LLL
          DO JG=IG,1,-1
            LGBIN2=NFS(JG)
            IF(LLL+LI-MML+1.GT.LLJ+LGBIN2) EXIT
            IF(.NOT.ASSOCIATED(U_M(JG)%MATRIX)) THEN
              CALL XABORT('LIBRSE: U_M(JG)%MATRIX IS NOT ASSOCIATED.')
            ENDIF
            MJ=MRANK(JG)
            IF(LI.EQ.1) THEN
              NJJ(IG)=NJJ(IG)+1
              ALLOCATE(DDD_M(JG)%MATRIX(LGBIN,MJ))
              DDD_M(JG)%MATRIX(:LGBIN,:MJ)=0.0D0
            ENDIF
            DO LJ=1,LGBIN2
              DDD_M(JG)%MATRIX(LI,:MJ)=DDD_M(JG)%MATRIX(LI,:MJ)+
     1        STR(LLJ+LJ)*U_M(JG)%MATRIX(LJ,:MJ)
            ENDDO
            IF(JG.GT.1) LLJ=LLJ-NFS(JG-1)
          ENDDO
        ENDDO
        !
        NPOS=0
        DO JG=IG-NJJ(IG)+1,IG
          IF(ASSOCIATED(U_M(IG)%MATRIX).AND.
     1       ASSOCIATED(DDD_M(JG)%MATRIX)) THEN
            MJ=MRANK(JG)
            NPOS=NPOS+1
            ALLOCATE(SSIGS(MI,MJ))
            SSIGS=MATMUL(TRANSPOSE(U(:LGBIN,:MI)),
     1                   DDD_M(JG)%MATRIX(:LGBIN,:MJ))
            SCAT_M(IG,JG)%MATRIX => SSIGS
            NULLIFY(SSIGS)
            DEALLOCATE(DDD_M(JG)%MATRIX)
          ENDIF
        ENDDO
        IF(NPOS.EQ.0) CALL XABORT('LIBRSE: NPOS=0.')
*----
*  LINEAR TRANSFORMATION
*----
        ALLOCATE(T_M(IG)%MATRIX(MI,MI),SIGT_V(IG)%VECTOR(MI))
        ALLOCATE(WEIGHT_V(IG)%VECTOR(MI),GAMMA_V(IG)%VECTOR(MI))
        ALLOCATE(CT(MI,MI),CD(MI,MI))
        CALL ALHQR(MI,MI,SIGT_M(IG)%MATRIX,MAXITER,ITER,CT,CD)
        DO LI=1,MI
          IF(AIMAG(CD(LI,LI)) /= 0.0D0) THEN
            CALL XABORT('LIBRSE: COMPLEX EIGENVALUE FOUND.')
          ENDIF
          SIGT_V(IG)%VECTOR(LI)=REAL(CD(LI,LI),8)
          DO LJ=1,MI
            T_M(IG)%MATRIX(LI,LJ)=REAL(CT(LI,LJ),8)
          ENDDO
        ENDDO
        DEALLOCATE(CD,CT)
        ALLOCATE(TTT(MI,MI))
        TTT(:MI,:MI)=TRANSPOSE(T_M(IG)%MATRIX(:MI,:MI))
        WEIGHT_V(IG)%VECTOR=MATMUL(TTT,UU_V(IG)%VECTOR)/DELTG(IG)
        GAMMA_V(IG)%VECTOR=MATMUL(TTT,U_V(IG)%VECTOR)
        DO JG=1,IG
          IF(ASSOCIATED(SCAT_M(IG,JG)%MATRIX)) THEN
            MJ=MRANK(JG)
            ALLOCATE(TSCAT_M(IG,JG)%MATRIX(MI,MJ))
            ALLOCATE(SSIGS(MI,MJ),DDD(MI,MJ))
            DDD=MATMUL(SCAT_M(IG,JG)%MATRIX,T_M(JG)%MATRIX)
            SSIGS=MATMUL(TTT,DDD)
            TSCAT_M(IG,JG)%MATRIX => SSIGS
            NULLIFY(SSIGS)
            DEALLOCATE(DDD)
          ENDIF
        ENDDO
        DEALLOCATE(TTT)
        LLL=LLL+LGBIN
        IF(IMPX.EQ.1) THEN
          WRITE(6,'(15H LIBRSE: RANK('',A12,2H'',,I4,2H)=,I3)') HNAMIS,
     1    IG,MI
        ELSE IF(IMPX.GE.2) THEN
          WRITE(6,'(/10H LIBRSE: '',A12,27H'' SIGT BASE POINTS IN GROUP,
     1    I5,1H:)') HNAMIS,IG
          WRITE(6,'(1X,1P,12E12.4)') SIGT_V(IG)%VECTOR(:MI)
        ENDIF
        IF(IMPX.GE.3) THEN
          WRITE(6,'(/10H LIBRSE: '',A12,23H'' NWT0 WEIGHTS IN GROUP,I5,
     1    1H:)') HNAMIS,IG
          WRITE(6,'(1X,1P,12E12.4)') WEIGHT_V(IG)%VECTOR(:MI)
        ENDIF
      ENDDO
      DEALLOCATE(DDD_M)
*----
*  COMPUTE RESONANCE SPECTRUM EXPANSION TABLES
*  XSDIL dilution dependent self-shielded cross sections:
*        XSDIL(1,:NDIL) self-shielded fluxes;
*        XSDIL(2,:NDIL) total self-shielded cross sections;
*        XSDIL(3,:NDIL) nu*fission self-shielded cross sections;
*        XSDIL(4,:NDIL) P0 scattering cross sections;
*        etc.
*        XSDIL(j,NDIL) are the infinite dilution values.
*----
      ALLOCATE(DGAR(NDIL))
      DO IG=1,NGRP
        MI=MRANK(IG)
        IF(MI.EQ.0) CYCLE
        NPART=3+NL+NED+NDEL
        DO IL=1,NL
          NPART=NPART+MAX(ISMAX(IL,IG)-ISMIN(IL,IG)+1,0)
        ENDDO
        ALLOCATE(SIGP_M(IG)%MATRIX(NPART,MI),XSDIL(NPART,NDIL))
        XSDIL(1,:NDIL)=EFF_M(IG)%MATRIX(:NDIL,1)
        XSDIL(2,:NDIL)=EFF_M(IG)%MATRIX(:NDIL,2)
        XSDIL(3,:NDIL)=SIGF(IG,:NDIL)*XSDIL(1,:NDIL)
        XSDIL(4,:NDIL)=EFF_M(IG)%MATRIX(:NDIL,3)
        DGAR(:NDIL)=XSDIL(4,:NDIL)/(SIGSD(IG,1,:NDIL)*XSDIL(1,:NDIL))
        DO IL=2,NL
         XSDIL(3+IL,:NDIL)=DGAR(:NDIL)*SIGSD(IG,IL,:NDIL)*XSDIL(1,:NDIL)
        ENDDO
        IF(NPART.EQ.3+NL) EXIT
        IOF=3+NL
        DO IL=1,NL
          IF(LSCAT(IL)) THEN
            DO JG=ISMIN(IL,IG),ISMAX(IL,IG)
              IOF=IOF+1
              XSDIL(IOF,:NDIL)=DGAR(:NDIL)*SCAT(JG,IG,IL,:NDIL)*
     1        XSDIL(1,:NDIL)
            ENDDO
          ENDIF
        ENDDO
        DO IED=1,NED
          IOF=IOF+1
          IF((HVECT(IED).EQ.'NINEL').OR.(HVECT(IED).EQ.'NELAS').OR.
     1       (HVECT(IED).EQ.'N2N').OR.(HVECT(IED).EQ.'N3N').OR.
     2       (HVECT(IED).EQ.'N4N').OR.(HVECT(IED).EQ.'NX').OR.
     3       (HVECT(IED).EQ.'STRD')) THEN
            XSDIL(IOF,:NDIL)=SADD(IG,IED,:NDIL)*XSDIL(1,:NDIL)
          ELSE
            XSDIL(IOF,:NDIL)=SADD(IG,IED,:NDIL)*XSDIL(1,:NDIL)
          ENDIF
        ENDDO
        DO IDEL=1,NDEL
          IOF=IOF+1
          XSDIL(IOF,:NDIL)=ZDEL(IG,IDEL,:NDIL)*XSDIL(1,:NDIL)
        ENDDO
        IF(IOF.NE.NPART) CALL XABORT('LIBRSE: INVALID NPART.')
        ALLOCATE(DDD(NPART,MI))
        DDD(:NPART,:MI)=MATMUL(XSDIL(:NPART,:NDIL),
     1           V_M(IG)%MATRIX(:NDIL,:MI))
        SIGP_M(IG)%MATRIX(:NPART,:MI)=MATMUL(DDD(:NPART,:MI),
     1           T_M(IG)%MATRIX(:MI,:MI))
        DEALLOCATE(DDD,XSDIL)
        IF(IMPX.GE.3) THEN
          WRITE(6,'(/10H LIBRSE: '',A12,27H'' TABLE COMPONENTS IN GROUP,
     1    I5,1H:)') HNAMIS,IG
          DO IPART=1,4
            IF(IPART.EQ.1) THEN
              WRITE(6,'(1X,A5,1P,12E12.4/(6X,12E12.4))') HPART(IPART),
     1        SIGP_M(IG)%MATRIX(1,:MI)
            ELSE
              WRITE(6,'(1X,A5,1P,12E12.4/(6X,12E12.4))') HPART(IPART),
     1        SIGP_M(IG)%MATRIX(IPART,:MI)/SIGP_M(IG)%MATRIX(1,:MI)
            ENDIF
          ENDDO
        ENDIF
      ENDDO
      DEALLOCATE(DGAR)
*----
*  SAVE SCAT_M INFORMATION IN IPLIB
*----
      CALL LCMSIX(IPLIB,'PT-TABLE',1)
      NPOS=0
      DO IG=1,NGRP
        DO JG=1,IG
          IF(ASSOCIATED(SCAT_M(IG,JG)%MATRIX)) NPOS=NPOS+1
        ENDDO
      ENDDO
      IF(NPOS.EQ.0) GO TO 10
      CALL LCMSIX(IPLIB,HNAMIS,1)
        JPLIB2=LCMLID(IPLIB,'SCAT_M',NPOS) ! holds TSCAT_M information
        IPOS=0
        DO IG=1,NGRP
          MI=MRANK(IG)
          IF(MI.EQ.0) CYCLE
          NJJ(IG)=0
          DO JG=IG,1,-1
            IF(ASSOCIATED(SCAT_M(IG,JG)%MATRIX)) THEN
              MJ=MRANK(JG)
              IPOS=IPOS+1
              IF(IPOS.GT.NPOS) CALL XABORT('LIBRSE: NPOS OVERFLOW.')
              NJJ(IG)=NJJ(IG)+1
              CALL LCMPDL(JPLIB2,IPOS,MI*MJ,4,TSCAT_M(IG,JG)%MATRIX)
              DEALLOCATE(TSCAT_M(IG,JG)%MATRIX)
            ENDIF
          ENDDO
        ENDDO
        CALL LCMPUT(IPLIB,'NJJS00',NGRP,1,NJJ)
      CALL LCMSIX(IPLIB,' ',2)
*----
*  SAVE GROUP-RSE INFORMATION IN IPLIB
*----
   10 CALL LCMPUT(IPLIB,'NDEL',1,1,NDEL)
      CALL LCMPUT(IPLIB,'SVD-EPS',1,2,SVDEPS)
      JPLIB1=LCMLID(IPLIB,'GROUP-RSE',NGRP)
      DO IG=1,NGRP
        MI=MRANK(IG)
        IF(MI.EQ.0) CYCLE
        NPART=SIZE(SIGP_M(IG)%MATRIX,1)
        KPLIB=LCMDIL(JPLIB1,IG)
        LGBIN=NFS(IG)
        CALL LCMPUT(KPLIB,'SIGT_V',MI,4,SIGT_V(IG)%VECTOR)
        CALL LCMPUT(KPLIB,'WEIGHT_V',MI,4,WEIGHT_V(IG)%VECTOR)
        CALL LCMPUT(KPLIB,'GAMMA_V',MI,4,GAMMA_V(IG)%VECTOR)
        CALL LCMPUT(KPLIB,'T_M',MI*MI,4,T_M(IG)%MATRIX)
        CALL LCMPUT(KPLIB,'U_M',LGBIN*MI,4,U_M(IG)%MATRIX)
        CALL LCMPUT(KPLIB,'RSE-TABLE',NPART*MI,4,SIGP_M(IG)%MATRIX)
        DEALLOCATE(SIGT_V(IG)%VECTOR,GAMMA_V(IG)%VECTOR,
     1  WEIGHT_V(IG)%VECTOR,SIGP_M(IG)%MATRIX)
        DO IL=1,NL
          ISM(1,IL)=ISMIN(IL,IG)
          ISM(2,IL)=ISMAX(IL,IG)
        ENDDO
        CALL LCMPUT(KPLIB,'ISM-LIMITS',2*NL,1,ISM)
        CALL LCMVAL(KPLIB,' ')
      ENDDO
*----
*  PROCESS UNRESOLVED ENERGY DOMAIN.
*----
      JPLIB1=LCMLID(IPLIB,'GROUP-PT',NGRP)
      DO IG=1,NGRP
        LRSE=(NFS(IG).GT.0).AND.(GOLD(IG).EQ.-1001.0)
        IF(LRSE) CYCLE
        NPART=3+NL+NED+NDEL
        DO IL=1,NL
          NPART=NPART+MAX(ISMAX(IL,IG)-ISMIN(IL,IG)+1,0)
        ENDDO
        ALLOCATE(SIGP(MAXNOR*NPART))
        SIGP(:MAXNOR*NPART)=0.0
        NDIL=NDIL-1
        CALL LIBTAB(IG,NGRP,NL,NDIL,NPART,NED,NDEL,HNAMIS,IMPX,LSCAT,
     1  LSIGF,LADD,DILUT,TOTAL,SIGF,SIGSD,SCAT,SADD,ZDEL,1.0,ISMIN,
     2  ISMAX,MRANK(IG),SIGP)
        NDIL=NDIL+1
*
        IF(MRANK(IG).GT.1) THEN
*          SAVE THE PROBABILITY TABLE INTO IPLIB.
           KPLIB=LCMDIL(JPLIB1,IG)
           CALL LCMPUT(KPLIB,'PROB-TABLE',MAXNOR*NPART,2,SIGP)
           DO IL=1,NL
             ISM(1,IL)=ISMIN(IL,IG)
             ISM(2,IL)=ISMAX(IL,IG)
           ENDDO
           CALL LCMPUT(KPLIB,'ISM-LIMITS',2*NL,1,ISM)
        ENDIF
        DEALLOCATE(SIGP)
      ENDDO
      CALL LCMPUT(IPLIB,'NOR',NGRP,1,MRANK)
      CALL LCMSIX(IPLIB,' ',2)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DO IG=1,NGRP
        LRSE=(NFS(IG).GT.0).AND.(GOLD(IG).EQ.-1001.0)
        IF(.NOT.LRSE) CYCLE
        DEALLOCATE(U_M(IG)%MATRIX,U_V(IG)%VECTOR,UU_V(IG)%VECTOR)
        DEALLOCATE(PHI_M(IG)%MATRIX,EFF_M(IG)%MATRIX)
        DEALLOCATE(T_M(IG)%MATRIX,V_M(IG)%MATRIX)
      ENDDO
      DEALLOCATE(ISMAX,ISMIN)
      DEALLOCATE(GOLD,LADD,LSCAT,DELTG,ZDEL,SADD,SCAT,SIGSD,SIGF,TOTAL,
     1 FLUX)
      DEALLOCATE(DELTAU,DILUT,ISM,SIGP_M,TSCAT_M,WEIGHT_V,GAMMA_V,
     1 SIGT_V,T_M,SCAT_M,SIGT_M,V_M,U_M,UU_V,U_V,PHI_M,EFF_M,V,W,STIS,
     2 PRI,SIGT,SIGS,STR,DEL,UUU,EBIN)
      DEALLOCATE(MRANK,NJJ)
      RETURN
      END