1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
*DECK LIBPRQ
SUBROUTINE LIBPRQ(MAXTRA,DELI,AWR,E0,Q,IALTER,IL,N,PRI)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the PRI array for various Legendre orders using Gaussian
* integration. Inelastic scattering case.
*
*Copyright:
* Copyright (C) 2025 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXTRA allocated dimension of array PRI.
* DELI elementary lethargy width of the equi-width lethargy mesh.
* AWR mass ratio for current isotope.
* E0 energy corresponding to the upper limit of primary group.
* Q Q-value (negative value) for an inelastic diffusion.
* IALTER type of approximation (=0: use exponentials; =1: use Taylor
* expansions).
* IL Legendre order (=0: isotropic kernel in LAB).
*
*Parameters: output
* N exact dimension of array PRI.
* PRI array containing the slowing-down probabilities defined on
* an equi-width lethargy mesh.
*
*Reference:
* M. Grandotto-Biettoli, "AUTOSECOL, un calcul automatique de
* l'auto-protection des resonances des isotopes lourds,"
* Note CEA-N-1961, Commissariat a l'Energie Atomique, 1977.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER MAXTRA,IALTER,IL,N
REAL DELI,AWR,E0,Q,PRI(MAXTRA)
*----
* LOCAL VARIABLES
*----
PARAMETER(NGPT=6,MAXNL=50)
DOUBLE PRECISION AWRB,ALP,T0,FACT,COEF0,GAM,UM,UMIN,UMAX
REAL UI(NGPT),WI(NGPT),UJ(NGPT),WJ(NGPT)
REAL POLY(0:MAXNL),CALC(0:MAXNL,0:2)
CHARACTER HSMG*131
ZMU(AWR,RGAM,U)=0.5*(AWR+1.0)*EXP(-0.5*U)-0.5*(RGAM/(AWR+1.0)+
1 AWR-1.0)*EXP(0.5*U)
*----
* COMPUTE THE LEGENDRE POLYNOMIAL OF ORDER IL.
*----
IF(IL.GT.MAXNL) CALL XABORT('LIBPRQ: IL OVERFLOW.')
IF(IL.EQ.0) THEN
POLY(0)=1.0
ELSE IF(IL.EQ.1) THEN
POLY(0)=0.0
POLY(1)=1.0
ELSE
CALC(0:MAXNL,0:1)=0.0
CALC(0,0)=1.0
CALC(1,1)=1.0
DO J=2,IL
DO I=0,IL
T0=-REAL(J-1)*CALC(I,MOD(J-2,3))
IF(I.GT.0) T0=T0+(2.0*REAL(J-1)+1.0)*CALC(I-1,MOD(J-1,3))
CALC(I,MOD(J,3))=REAL(T0)/REAL(J)
ENDDO
ENDDO
POLY(0:IL)=CALC(0:IL,MOD(IL,3))
ENDIF
*
AWRB=AWR
IF(AWR.LT.1.0001) AWRB=1.0001
GAM=AWRB*(AWRB+1.D0)*Q/E0
UMIN=LOG((AWRB+1.D0)**2/(AWRB**2+1.D0+GAM+2.D0*SQRT(AWRB**2+GAM)))
IF(-GAM.GT.AWRB**2) CALL XABORT('LIBPRQ: NEGATIVE SQRT ARGUMENT.')
IF(UMIN.LT.DELI) THEN
! pathological case where the treshold is negligible
CALL LIBPRI(MAXTRA,DELI,AWR,IALTER,IL,N,PRI)
RETURN
ENDIF
PRI(:MAXTRA)=0.0
ALP=((AWRB-1.D0)/(AWRB+1.D0))**2
CALL ALGPT(NGPT,0.0,DELI,UI,WI)
N=0
DO I=1,NGPT
! primary group base point
WII=WI(I)
UII=UI(I)
EN=E0*EXP(-UI(I)*DELI)
GAM=AWRB*(AWRB+1.D0)*Q/EN
UM=AWRB**2+1.D0+GAM
UMIN=LOG((AWRB+1.D0)**2/(UM+2.D0*SQRT(AWRB**2+GAM)))
UMAX=LOG((AWRB+1.D0)**2/(UM-2.D0*SQRT(AWRB**2+GAM)))
NMIN=1+INT((UMIN-1.D-6)/DELI)
NMAX=1+INT((UMAX-1.D-6)/DELI)
IF(NMAX.GT.MAXTRA) THEN
WRITE(HSMG,'(25HLIBPRQ: MAXTRA OVERFLOW (,I8,2H >,I8,2H).)')
1 NMAX,MAXTRA
CALL XABORT(HSMG)
ENDIF
COEF0=AWRB/SQRT(AWRB**2+GAM)
WII=WII*REAL(COEF0)
IF(NMAX.EQ.NMIN) THEN
CALL ALGPT(NGPT,REAL(UMIN),REAL(UMAX),UJ,WJ)
DO J=1,NGPT
FACT=POLY(0)
T0=1.0D0
DO K=1,IL
T0=T0*ZMU(AWR,REAL(GAM),UJ(J)-UII)
FACT=FACT+POLY(K)*T0
ENDDO
IF(IALTER.EQ.0) THEN
PRI(NMIN)=PRI(NMIN)+WII*WJ(J)*EXP(UII-UJ(J))*REAL(FACT)
ELSE
PRI(NMIN)=PRI(NMIN)+WII*WJ(J)*REAL(FACT/(UMAX-UMIN))
ENDIF
ENDDO ! J
ELSE
CALL ALGPT(NGPT,REAL(UMIN),NMIN*DELI,UJ,WJ)
DO J=1,NGPT
FACT=POLY(0)
T0=1.0D0
DO K=1,IL
T0=T0*ZMU(AWR,REAL(GAM),UJ(J)-UII)
FACT=FACT+POLY(K)*T0
ENDDO
IF(IALTER.EQ.0) THEN
PRI(NMIN)=PRI(NMIN)+WII*WJ(J)*EXP(UII-UJ(J))*REAL(FACT)
ELSE
PRI(NMIN)=PRI(NMIN)+WII*WJ(J)*REAL(FACT/(UMAX-UMIN))
ENDIF
ENDDO ! J
DO N=NMIN+1,NMAX-1
CALL ALGPT(NGPT,(N-1)*DELI,N*DELI,UJ,WJ)
DO J=1,NGPT
FACT=POLY(0)
T0=1.0D0
DO K=1,IL
T0=T0*ZMU(AWR,REAL(GAM),UJ(J)-UII)
FACT=FACT+POLY(K)*T0
ENDDO
IF(IALTER.EQ.0) THEN
PRI(N)=PRI(N)+WII*WJ(J)*EXP(UII-UJ(J))*REAL(FACT)
ELSE
PRI(N)=PRI(N)+WII*WJ(J)*REAL(FACT/(UMAX-UMIN))
ENDIF
ENDDO ! J
ENDDO ! N
CALL ALGPT(NGPT,(NMAX-1)*DELI,REAL(UMAX),UJ,WJ)
DO J=1,NGPT
FACT=POLY(0)
T0=1.0D0
DO K=1,IL
T0=T0*ZMU(AWR,REAL(GAM),UJ(J)-UII)
FACT=FACT+POLY(K)*T0
ENDDO
IF(IALTER.EQ.0) THEN
PRI(NMAX)=PRI(NMAX)+WII*WJ(J)*EXP(UII-UJ(J))*REAL(FACT)
ELSE
PRI(NMAX)=PRI(NMAX)+WII*WJ(J)*REAL(FACT/(UMAX-UMIN))
ENDIF
ENDDO ! J
ENDIF
N=MAX(N,NMAX)
ENDDO ! I
IF(IALTER.EQ.0) THEN
PRI(:N)=PRI(:N)/DELI/REAL(1.0D0-ALP)
ELSE
PRI(:N)=PRI(:N)/DELI
ENDIF
*----
* NORMALIZATION
*----
IF(IL.EQ.0) THEN
FACT=0.0D0
DO I=1,N
FACT=FACT+PRI(I)
ENDDO
PRI(:N)=PRI(:N)/REAL(FACT)
ENDIF
RETURN
END
|