1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
*DECK LIBCOR
SUBROUTINE LIBCOR (IPLIB,NGRO,ISOT,JSOT,HNAMIS1,HNAMIS2)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the correlation information between a pair of resonant
* isotopes for the CALENDF method.
*
*Copyright:
* Copyright (C) 2003 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB pointer to the internal library (L_LIBRARY signature).
* NGRO number of energy groups.
* ISOT position in list of the first isotope.
* JSOT position in list of the second isotope.
* HNAMIS1 local name of the first isotope:
* HNAMIS1(1:8) is the local isotope name;
* HNAMIS1(9:12) is a suffix function of the mixture index.
* HNAMIS2 local name of the second isotope
* HNAMIS2(1:8) is the local isotope name;
* HNAMIS2(9:12) is a suffix function of the mixture index.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLIB
INTEGER NGRO,ISOT,JSOT
CHARACTER HNAMIS1*12,HNAMIS2*12
*----
* LOCAL VARIABLES
*----
PARAMETER(MAXNPT=12)
TYPE(C_PTR) JPLIB,IP1,IP2,JP1,JP2,KP1,KP2
REAL SIGQT1(MAXNPT),SIGQT2(MAXNPT),WSLD1(MAXNPT**2),
1 WSLD2(MAXNPT**2)
DOUBLE PRECISION SUMA1,SUMB1,SUMA2,SUMB2
INTEGER, ALLOCATABLE, DIMENSION(:) :: NFS1,NFS2
REAL, ALLOCATABLE, DIMENSION(:) :: TBIN1,TBIN2,EBIN,DBIN,PROB1,
1 PROB2
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: COMOM
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(NFS1(NGRO),NFS2(NGRO))
*
JPLIB=LCMGID(IPLIB,'ISOTOPESLIST')
IP1=LCMGIL(JPLIB,ISOT) ! set ISOT-th isotope
IP2=LCMGIL(JPLIB,JSOT) ! set JSOT-th isotope
CALL LCMLEN(IP1,'BIN-NFS',LENGT1,ITYLCM)
CALL LCMLEN(IP2,'BIN-NFS',LENGT2,ITYLCM)
IF((LENGT1.EQ.0).OR.(LENGT1.NE.LENGT2)) CALL XABORT('LIBCOR: UNA'
1 //'BLE TO FIND CONSISTENT BIN TYPE INFORMATION.')
CALL LCMGET(IP1,'BIN-NFS',NFS1)
CALL LCMGET(IP2,'BIN-NFS',NFS2)
LBIN=0
IGRMIN=1
IGRMAX=NGRO
DO 10 IGRP=NGRO,1,-1
IF(NFS1(IGRP).NE.NFS2(IGRP)) CALL XABORT('INVALID BIN INFO.')
IF((IGRMAX.EQ.IGRP).AND.(NFS1(IGRP).EQ.0)) IGRMAX=IGRP-1
LBIN=LBIN+NFS1(IGRP)
10 CONTINUE
DO 20 IGRP=1,NGRO
IF((IGRMIN.EQ.IGRP).AND.(NFS1(IGRP).EQ.0)) IGRMIN=IGRP+1
20 CONTINUE
ALLOCATE(TBIN1(LBIN),TBIN2(LBIN),EBIN(LBIN+1),DBIN(LBIN))
CALL LCMGET(IP1,'BIN-ENERGY',EBIN)
CALL LCMGET(IP1,'BIN-NTOT0',TBIN1)
CALL LCMGET(IP2,'BIN-NTOT0',TBIN2)
CALL LCMSIX(IP1,'PT-TABLE',1)
CALL LCMSIX(IP2,'PT-TABLE',1)
*---
* LOOP OVER THE RESONANT ENERGY GROUPS.
*---
LBIN=0
JP1=LCMGID(IP1,'GROUP-PT')
JP2=LCMGID(IP2,'GROUP-PT')
DO 130 IGRP=IGRMIN,IGRMAX
SUMA1=0.0D0
SUMB1=0.0D0
SUMA2=0.0D0
SUMB2=0.0D0
DO 30 IGF=1,NFS1(IGRP)
SIGTA=MAX(0.002,TBIN1(LBIN+IGF))
SIGTB=MAX(0.002,TBIN2(LBIN+IGF))
DELM=LOG(EBIN(LBIN+IGF)/EBIN(LBIN+IGF+1))
SUMA1=SUMA1+TBIN1(LBIN+IGF)*DELM
SUMB1=SUMB1+SIGTA*DELM
SUMA2=SUMA2+TBIN2(LBIN+IGF)*DELM
SUMB2=SUMB2+SIGTB*DELM
TBIN1(LBIN+IGF)=SIGTA
TBIN2(LBIN+IGF)=SIGTB
DBIN(LBIN+IGF)=DELM
30 CONTINUE
DO 40 IGF=1,NFS1(IGRP)
TBIN1(LBIN+IGF)=TBIN1(LBIN+IGF)*REAL(SUMA1/SUMB1)
TBIN2(LBIN+IGF)=TBIN2(LBIN+IGF)*REAL(SUMA2/SUMB2)
40 CONTINUE
*
CALL LCMLEL(JP1,IGRP,N1,ITYLCM)
CALL LCMLEL(JP2,IGRP,N2,ITYLCM)
IF((N1.EQ.0).OR.(N2.EQ.0)) GO TO 120
KP1=LCMGIL(JP1,IGRP)
KP2=LCMGIL(JP2,IGRP)
CALL LCMLEN(KP1,'SIGQT-SIGS',NQT1,ITYLCM)
CALL LCMLEN(KP2,'SIGQT-SIGS',NQT2,ITYLCM)
CALL LCMLEN(KP1,'PROB-TABLE',NQT10,ITYLCM)
CALL LCMLEN(KP2,'PROB-TABLE',NQT20,ITYLCM)
ALLOCATE(PROB1(NQT10),PROB2(NQT20))
CALL LCMGET(KP1,'PROB-TABLE',PROB1)
CALL LCMGET(KP2,'PROB-TABLE',PROB2)
DO 50 I=1,NQT1
SIGQT1(I)=PROB1(MAXNPT+I)
50 CONTINUE
DO 60 I=1,NQT2
SIGQT2(I)=PROB2(MAXNPT+I)
60 CONTINUE
*
ALLOCATE(COMOM(NQT1*NQT2))
CALL LIBCOM(NFS1(IGRP),DBIN(LBIN+1),TBIN1(LBIN+1),
1 TBIN2(LBIN+1),NQT1,NQT2,COMOM)
CALL LIBOMG(NQT1,1-NQT1/2,SIGQT1,NQT2,1-NQT2/2,SIGQT2,
1 COMOM,WSLD1)
DEALLOCATE(COMOM)
*---
* CHECK NORMALIZATION OF THE CORRELATED WEIGHT MATRIX.
*---
DO 80 I=1,NQT1
SUM=0.0
DO 70 J=1,NQT2
SUM=SUM+WSLD1((J-1)*NQT1+I)
70 CONTINUE
IF(ABS(SUM-PROB1(I)).GT.1.0E-4) THEN
CALL XABORT('LIBCOR: BAD NORMALIZATION EXCEPTION(1).')
ENDIF
80 CONTINUE
DO 100 I=1,NQT2
SUM=0.0
DO 90 J=1,NQT1
SUM=SUM+WSLD1((I-1)*NQT1+J)
90 CONTINUE
IF(ABS(SUM-PROB2(I)).GT.1.0E-4) THEN
CALL XABORT('LIBCOR: BAD NORMALIZATION EXCEPTION(2).')
ENDIF
100 CONTINUE
DEALLOCATE(PROB2,PROB1)
*
CALL LCMPUT(KP1,HNAMIS2,NQT1*NQT2,2,WSLD1)
DO 115 I=1,NQT1
DO 110 J=1,NQT2
WSLD2((I-1)*NQT2+J)=WSLD1((J-1)*NQT1+I)
110 CONTINUE
115 CONTINUE
CALL LCMPUT(KP2,HNAMIS1,NQT2*NQT1,2,WSLD2)
120 LBIN=LBIN+NFS1(IGRP)
130 CONTINUE
*
CALL LCMSIX(IP2,' ',2)
CALL LCMSIX(IP1,' ',2)
DEALLOCATE(DBIN,EBIN,TBIN2,TBIN1)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(NFS2,NFS1)
RETURN
END
|