1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
*DECK LIBADD
SUBROUTINE LIBADD (IPLIB,NBISO,MASKI,IMPX,NGRO,NL,ITRANC,NDEPL,
1 ISONAM,ISONRF,IPISO,NIR,GIR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Add transport correction, Goldstein-Cohen and H-FACTOR data to a
* /microlib/ directory.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB pointer to the lattice microscopic cross section library
* (L_LIBRARY signature).
* NBISO number of isotopes present in the calculation domain.
* MASKI isotopic mask. Isotope with index I is processed if
* MASKI(I)=.true.
* IMPX print flag.
* NGRO number of energy groups.
* NL number of Legendre orders required in the calculation
* NL=1 (for isotropic scattering) or higher.
* ITRANC transport correction option (=0: no correction; =1: Apollo-
* type; =2: recover TRANC record; =3: Wims-type; =4: leakage
* correction alone).
* NDEPL number of depleting isotopes.
* ISONAM alias name of each isotope.
* ISONRF library reference name of each isotope.
* IPISO pointer array towards microlib isotopes.
* NIR group index with an imposed IR slowing-down model (=0 for no
* IR model).
* GIR value of the imposed Goldstein-Cohen parameter for groups
* with an IR model.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLIB,IPISO(NBISO)
INTEGER NBISO,IMPX,NGRO,NL,ITRANC,NDEPL,ISONAM(3,NBISO),
1 ISONRF(3,NBISO),NIR(NBISO)
LOGICAL MASKI(NBISO)
REAL GIR(NBISO)
*----
* LOCAL VARIABLES
*----
PARAMETER (IOUT=6,NSTATE=40)
INTEGER ISTATE(NSTATE)
TYPE(C_PTR) JPLIB,KPLIB
CHARACTER HSONAM*12,HSONRF*12,HSMG*131
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: WORK,WR2,DELTA
REAL, ALLOCATABLE, DIMENSION(:,:) :: SCAT,RER
CHARACTER(LEN=8), ALLOCATABLE, DIMENSION(:) :: HREAC
CHARACTER(LEN=12), ALLOCATABLE, DIMENSION(:) :: HGAR
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(WORK(NGRO),WR2(NGRO),SCAT(NGRO,NGRO),DELTA(NGRO+1))
*----
* RECOVER THE ENERGY GRID.
*----
CALL LCMLEN(IPLIB,'ENERGY',LENGT,ITYLCM)
IF(LENGT.EQ.0) CALL XABORT('LIBADD: NO GROUP STRUCTURE AVAILABLE')
CALL LCMGET(IPLIB,'ENERGY',DELTA)
NGX=0
DO 10 IGR=1,NGRO
IF((NGX.EQ.0).AND.(DELTA(IGR+1).LT.4.0)) NGX=IGR-1
10 CONTINUE
DO 15 IGR=1,NGRO
DELTA(IGR)=LOG(DELTA(IGR)/DELTA(IGR+1))
15 CONTINUE
*----
* RECOVER DEPLETION DATA.
*----
NREAC=0
IF(NDEPL.NE.0) THEN
CALL LCMLEN(IPLIB,'DEPL-CHAIN',LENGTH,ITYLCM)
IF(LENGTH.EQ.0) THEN
CALL LCMLIB(IPLIB)
CALL XABORT('LIBADD: MISSING DEPL-CHAIN DATA.')
ENDIF
CALL LCMSIX(IPLIB,'DEPL-CHAIN',1)
CALL LCMGET(IPLIB,'STATE-VECTOR',ISTATE)
IF(ISTATE(1).NE.NDEPL) CALL XABORT('LIBADD: INVALID NUMBER OF '
1 //'DEPLETING ISOTOPES.')
NREAC=ISTATE(8)
ALLOCATE(HGAR(NDEPL),RER(NREAC,NDEPL),HREAC(NREAC))
CALL LCMGTC(IPLIB,'ISOTOPESDEPL',12,NDEPL,HGAR)
CALL LCMGET(IPLIB,'DEPLETE-ENER',RER)
CALL LCMGTC(IPLIB,'DEPLETE-IDEN',8,NREAC,HREAC)
CALL LCMSIX(IPLIB,' ',2)
ENDIF
*
DO 110 ISO=1,NBISO
IF(MASKI(ISO)) THEN
WRITE(HSONAM,'(3A4)') (ISONAM(I,ISO),I=1,3)
WRITE(HSONRF,'(3A4)') (ISONRF(I,ISO),I=1,3)
KPLIB=IPISO(ISO) ! set ISO-th isotope
IF(.NOT.C_ASSOCIATED(KPLIB)) GO TO 110
CALL LCMLEN(KPLIB,'NTOT0',ILENG,ITYLCM)
IF(ILENG.EQ.0) THEN
JPLIB=LCMGID(IPLIB,'ISOTOPESLIST')
CALL LCMLIB(JPLIB)
WRITE(HSMG,'(17H LIBADD: ISOTOPE ,A12,6H (ISO=,I6,
1 17H) IS NOT DEFINED.)') HSONAM,ISO
CALL XABORT(HSMG)
ENDIF
*
* REDIFINE THE GOLDSTEIN-COHEN PARAMETERS.
IF(NIR(ISO).GT.0) THEN
DO 20 IGR=1,MIN(NGRO,NIR(ISO)-1)
WORK(IGR)=1.0
20 CONTINUE
DO 30 IGR=NIR(ISO),NGRO
WORK(IGR)=GIR(ISO)
30 CONTINUE
CALL LCMPUT(KPLIB,'NGOLD',NGRO,2,WORK)
IF(IMPX.GT.1) THEN
IF(GIR(ISO).EQ.-998.0) THEN
WRITE(IOUT,210) HSONAM,'PT',NIR(ISO)
ELSE IF(GIR(ISO).EQ.-999.0) THEN
WRITE(IOUT,210) HSONAM,'PTSL',NIR(ISO)
ELSE IF(GIR(ISO).EQ.-1000.0) THEN
WRITE(IOUT,210) HSONAM,'PTMC',NIR(ISO)
ELSE
WRITE(IOUT,200) HSONAM,GIR(ISO),NIR(ISO)
ENDIF
ENDIF
ENDIF
*
* COMPUTE OR RECOVER THE TRANSPORT CORRECTION.
IF(ITRANC.EQ.2) THEN
* RECOVER THE TRANSPORT CORRECTION FROM THE LIBRARY.
CALL LCMLEN(KPLIB,'TRANC',ILENG,ITYLCM)
IF(ILENG.EQ.0) THEN
WORK(:NGRO)=0.0
CALL LCMPUT(KPLIB,'TRANC',NGRO,2,WORK)
ENDIF
ELSE IF(ITRANC.NE.0) THEN
WORK(:NGRO)=0.0
CALL LCMLEN(KPLIB,'NTOT1',ILENG,ITYLCM)
IF(ILENG.NE.0) THEN
* LEAKAGE CORRECTION.
CALL LCMGET(KPLIB,'NTOT1',WORK)
CALL LCMGET(KPLIB,'NTOT0',WR2)
DO 40 IG1=1,NGRO
WORK(IG1)=WR2(IG1)-WORK(IG1)
40 CONTINUE
ENDIF
IF((NL.GE.2).AND.(ITRANC.NE.4)) THEN
CALL LCMLEN(KPLIB,'SCAT-SAVED',ILENG,ITYLCM)
IF(ILENG.EQ.0) THEN
WRITE(HSMG,'(37H LIBADD: NO SCAT-SAVED RECORD FOR ISO,
1 5HTOPE ,A12,1H.)') HSONAM
CALL XABORT(HSMG)
ENDIF
CALL XDRLGS(KPLIB,-1,0,1,1,1,NGRO,WR2,SCAT,ITY)
IF(ITRANC.EQ.1) THEN
* APOLLO-TYPE TRANSPORT CORRECTION. USE THE MICRO-
* REVERSIBILITY PRINCIPLE AT ALL ENERGIES.
DO 50 IG1=1,NGRO
WORK(IG1)=WORK(IG1)+WR2(IG1)
50 CONTINUE
ELSE IF(ITRANC.EQ.3) THEN
* WIMS-TYPE TRANSPORT CORRECTION. USE THE MICRO-
* REVERSIBILITY PRINCIPLE BELOW 4 EV AND A 1/E SPECTRUM
* ABOVE.
DO 65 IG1=1,MIN(NGRO,NGX)
DO 60 IG2=1,NGRO
WORK(IG1)=WORK(IG1)+SCAT(IG1,IG2)*DELTA(IG2)/DELTA(IG1)
60 CONTINUE
65 CONTINUE
DO 70 IG1=NGX+1,NGRO
WORK(IG1)=WORK(IG1)+WR2(IG1)
70 CONTINUE
ELSE
CALL XABORT('LIBADD: UNKNOWN TYPE OF CORRECTION.')
ENDIF
ENDIF
* ***CAUTION*** 'TRANC' CONTAINS BOTH TRANSPORT AND LEAKAGE
* CORRECTIONS.
CALL LCMPUT(KPLIB,'TRANC',NGRO,2,WORK)
ENDIF
*
* ADD OR CORRECT H-FACTOR INFORMATION IN THE MICROLIB.
IF(NDEPL.NE.0) THEN
JDEPL=0
DO IDEPL=1,NDEPL
JDEPL=IDEPL
IF(HSONRF.EQ.HGAR(IDEPL)) GO TO 80
ENDDO
CYCLE
80 WORK(:NGRO)=0.0
CALL LCMLEN(KPLIB,'H-FACTOR',LENGTH,ITYLCM)
IF(LENGTH.NE.0) CALL LCMGET(KPLIB,'H-FACTOR',WORK)
DO IREA=2,NREAC
CALL LCMLEN(KPLIB,HREAC(IREA),LENGTH,ITYLCM)
IF(LENGTH.EQ.0) CYCLE
IF(LENGTH.GT.NGRO) CALL XABORT('LIBADD: WR2 OVERFLOW.')
WR2(:NGRO)=0.0
CALL LCMGET(KPLIB,HREAC(IREA),WR2)
DO IG=1,LENGTH
WORK(IG)=WORK(IG)+RER(IREA,JDEPL)*WR2(IG)*1.0E6
ENDDO
ENDDO ! IREA
CALL LCMPUT(KPLIB,'H-FACTOR',NGRO,2,WORK)
IF(IMPX.GT.1) THEN
WRITE(IOUT,'(42H LIBADD: ADD H-FACTOR INFORMATION TO ISOTO,
1 3HPE ,A,1H.)') TRIM(HSONRF)
ENDIF
ENDIF
ENDIF
110 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
IF(NDEPL.NE.0) DEALLOCATE(HREAC,RER,HGAR)
DEALLOCATE(DELTA,SCAT,WR2,WORK)
RETURN
*
200 FORMAT(/51H LIBADD: THE GOLDSTEIN-COHEN PARAMETER OF ISOTOPE ',
1 A12,12H' WAS SET TO,F5.2,33H FOR GROUPS WITH INDEX GREATER OR,
2 9H EQUAL TO,I4,1H.)
210 FORMAT(/18H LIBADD: ISOTOPE ',A12,20H' IS PROCESSED WITH ,A,
1 48H METHOD IN GROUPS WITH INDEX GREATER OR EQUAL TO,I4,1H.)
END
|