summaryrefslogtreecommitdiff
path: root/Dragon/src/FLU2DR.f
blob: 37ac3165706e33a6a2ee30d91d17e4303cb0c11a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
*DECK FLU2DR
      SUBROUTINE FLU2DR(IPRT,IPMACR,IPFLUX,IPSYS,IPTRK,IPFLUP,IPSOU,
     1 IGPT,IFTRAK,CXDOOR,TITLE,NUNKNO,NREG,NSOUT,NANIS,NLF,NLIN,NFUNL,
     2 NGRP,NMAT,NIFIS,LFORW,LEAKSW,MAXINR,EPSINR,MAXOUT,EPSUNK,EPSOUT,
     3 NCPTL,NCPTA,ITYPEC,IPHASE,ITPIJ,ILEAK,OPTION,REFKEF,MATCOD,
     4 KEYFLX,VOL,XSTRC,XSDIA,XSNUF,XSCHI,LREBAL,INITFL,NMERG,IMERG)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Fixed source problem or inverse power method for K-effective or
* buckling iteration. Perform thermal iterations.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Roy
*
*Parameters: input
* IPRT    print flag.
* IPMACR  pointer to the macrolib LCM object.
* IPFLUX  pointer to the flux LCM object.
* IPSYS   pointer to the system LCM object.
* IPTRK   pointer to the tracking LCM object.
* IPFLUP  pointer to the unperturbed flux LCM object (if ITYPEC=1).
* IPSOU   pointer to the fixed source LCM object (if ITYPEC=0 or 1).
* IGPT    index of the fixed source eigenvalue problem to solve.
* IFTRAK  tracking file unit number.
* CXDOOR  character name of the flux solution door.
* TITLE   title.
* NUNKNO  number of unknowns per energy group including spherical
*         harmonic terms, interface currents and fundamental
*         currents.
* NREG    number of regions.
* NSOUT   number of outer surfaces.
* NANIS   maximum cross section Legendre order in object IPMACR.
* NLF     number of Legendre orders for the flux.
* NLIN    number of polynomial components in flux spatial expansion.
* NFUNL   number of spherical harmonics components.
* NGRP    number of energy groups.
* NMAT    number of mixtures in the macrolib.
* NIFIS   number of fissile isotopes.
* LFORW   flag set to .false. to solve an adjoint problem.
* LEAKSW  leakage flag (=.true. if leakage is present on the outer
*         surface).
* MAXINR  maximum number of thermal iterations.
* EPSINR  thermal iterations epsilon.
* MAXOUT  maximum number of outer iterations.
* EPSUNK  outer iterations eigenvector epsilon.
* EPSOUT  outer iterations eigenvalue epsilon.
* NCPTL   number of free iterations in an acceleration cycle.
* NCPTA   number of accelerated iterations in an acceleration cycle.
* ITYPEC  type of flux evaluation:
*         =-2 Fourier analysis;
*         =-1 skip the flux calculation;
*         =0 fixed sources;
*         =1 fixed source eigenvalue problem (GPT type);
*         =2 fission sources/k effective convergence;
*         =3 fission sources/k effective convergence/
*             db2 buckling evaluation;
*         =4 fission sources/db2 buckling convergence;
*         =5 b2 sources/db2 buckling convergence.
* IPHASE  type of flux solution door (1 for asm 2 for pij).
* ITPIJ   type of cp available:
*         =1 scatt mod pij (wij);
*         =2 stand. pij;
*         =3 scatt mod pij+pijk (wij,wijk);
*         =4 standard pij+pijk.
* ILEAK   method used to include DB2 effect:
*         =1 the scattering modified cp matrix is multiplied by PNLR;
*         =2 the reduced cp matrix is multiplied by PNL;
*         =3 sigs0-db2 approximation;
*         =4 albedo approximation;
*         =5 Todorova-type isotropic streaming model;
*         =6 Ecco-type isotropic streaming model;
*         >6 Tibere type anisotropic streaming model.
* OPTION  type of leakage coefficients:
*         'LKRD' (recover leakage coefficients in Macrolib);
*         'RHS' (recover leakage coefficients in RHS flux object);
*         'B0' (B-0), 'P0' (P-0), 'B1' (B-1),
*         'P1' (P-1), 'B0TR' (B-0 with transport correction) or 'P0TR'
*         (P-0 with transport correction).
* REFKEF  target effective multiplication factor.
* MATCOD  mixture indices.
* KEYFLX  index of L-th order flux components in unknown vector.
* VOL     volumes.
* XSTRC   transport-corrected macroscopic total cross sections.
* XSDIA   transport-corrected macroscopic within-group scattering cross
*         sections.
* XSNUF   nu*macroscopic fission cross sections.
* XSCHI   fission spectrum.
* LREBAL  thermal iteration rebalancing flag (=.true. if thermal
*         rebalancing required).
* INITFL  flux initialization flag (=0/1/2: uniform flux/LCM/DSA).
* NMERG   number of leakage zones.
* IMERG   leakage zone index in each material mixture zone.
*
*-----------------------------------------------------------------------
*
*----
*  INTERNAL PARAMETERS:
*   SYBILF : SYBIL FLUX SOLUTION DOOR                 EXT ROUTINE
*   TRFICF : DEFAULT CP FLUX SOLUTION DOOR            EXT ROUTINE
*   BIVAF  : DEFAULT 2D DIFFUSION FLUX SOLUTION DOOR  EXT ROUTINE
*   TRIVAF : DEFAULT 3D DIFFUSION FLUX SOLUTION DOOR  EXT ROUTINE
*   PNF    : DEFAULT PN/SPN FLUX SOLUTION DOOR        EXT ROUTINE
*   SNF    : DEFAULT SN FLUX SOLUTION DOOR            EXT ROUTINE
*----
*
      USE GANLIB
      USE DOORS_MOD
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPMACR,IPFLUX,IPSYS,IPTRK,IPFLUP,IPSOU
      INTEGER IPRT,IGPT,IFTRAK,NUNKNO,NREG,NSOUT,NANIS,NLF,NLIN,NFUNL,
     1 NGRP,NMAT,NIFIS,MAXINR,MAXOUT,NCPTL,NCPTA,ITYPEC,IPHASE,ITPIJ,
     2 ILEAK,MATCOD(NREG),KEYFLX(NREG,NLIN,NFUNL),INITFL,NMERG,
     3 IMERG(NMAT)
      REAL EPSINR,EPSUNK,EPSOUT,VOL(NREG),XSTRC(0:NMAT,NGRP),
     1 XSDIA(0:NMAT,0:NANIS,NGRP),XSNUF(0:NMAT,NIFIS,NGRP),
     2 XSCHI(0:NMAT,NIFIS,NGRP)
      CHARACTER CXDOOR*12,TITLE*72,OPTION*4,HLEAK*6
      LOGICAL LFORW,LEAKSW,LREBAL,CFLI,CEXE
      DOUBLE PRECISION REFKEF
*----
*  LOCAL VARIABLES
*----
      PARAMETER(NSTATE=40,PI=3.141592654)
      TYPE(C_PTR) IPREB,J1,JPSOU,JPFLUX,JPMACR,KPMACR,JPSYS,KPSYS,IPSTR,
     1 JPSTR,KPSTR,JPFLUP1,JPFLUP2,JPSOUR
      INTEGER JPAR(NSTATE),KEYSPN(NREG)
      CHARACTER CAN(0:19)*2,MESSIN*8,MESSOU*5,HTYPE(0:5)*4
      INTEGER INDD(3)
      DOUBLE PRECISION AKEEP(8),FISOUR,OLDBIL,AKEFF,AKEFFO,AFLNOR,
     1 BFLNOR,DDELN1,DDELD1,PROD,FLXIN
      LOGICAL LSCAL,LEXAC,REBFLG
      REAL ALBEDO(6),FLUXC(NREG),B2(4)
*
************************************************************************
*                                                                      *
*   ICHAR       : COUNTER FOR NUM. OF OUTER ITERATIONS                 *
*   ICTOT       : TOTAL NUMBER OF FLUX CALCULATIONS                    *
*                                                                      *
************************************************************************
*
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS,NPSYS,KEYCUR,
     1 MATALB
      REAL, ALLOCATABLE, DIMENSION(:) :: DHOM,FXSOR,XSCAT,GAMMA,V,FL,DFL
      REAL, ALLOCATABLE, DIMENSION(:,:) :: DIFHET,SFNU
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: FLUX
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: XCSOU
*----
*  FOR NUMERICAL FOURIER ANALYSIS
*----
      REAL OMEGA,XLEN,EKKK,EVALRHO,SPECR
      REAL, ALLOCATABLE, DIMENSION(:) :: ARRAYRHO1
      REAL, ALLOCATABLE, DIMENSION(:) :: XXX
*----
*  DATA STATEMENTS
*----
      SAVE CAN,HTYPE
      DATA CAN /'00','01','02','03','04','05','06','07','08','09',
     >          '10','11','12','13','14','15','16','17','18','19'/
      DATA (HTYPE(JJ),JJ=0,5)/'S   ','P   ',2*'K   ','B   ','L   '/
*----
*  SCRATCH STORAGE ALLOCATION
*   DHOM    homogeneous leakage coefficients.
*   DIFHET  heterogeneous leakage coefficients.
*   FLUX    iteration flux:
*           FLUX(:,:,1) <=old     outer;
*           FLUX(:,:,2) <=present outer;
*           FLUX(:,:,3) <=new     outer;
*           FLUX(:,:,4) <=source  outer;
*           FLUX(:,:,5) <=old     inner;
*           FLUX(:,:,6) <=present inner;
*           FLUX(:,:,7) <=new     inner;
*           FLUX(:,:,8) <=source  inner.
*----
      ALLOCATE(IJJ(0:NMAT),NJJ(0:NMAT),IPOS(0:NMAT),NPSYS(NGRP))
      ALLOCATE(FLUX(NUNKNO,NGRP,8),XSCAT(0:NMAT*NGRP),GAMMA(NGRP),
     1 DHOM(NGRP),DIFHET(NMERG,NGRP),XCSOU(NGRP))
*
      REBFLG=.TRUE.
      IPREB=IPMACR
*
      AKEEP(:8)=0.0D0
      ICHAR=0
      ICTOT=0
*----
*  RECOVER INDEX FOR THE CURRENTS IN FLUX, NUMERICAL SURFACES,
*  ALBEDO IF NEEDED BY THE REBALANCING.
*----
      ICREB=0
      NNN=0
      INSB=0
      IBFP=0
      NDIM=0
      NFOU=0
      LX=0
      ITYPE=0
      IF(CXDOOR.EQ.'MCCG') THEN
         CALL LCMGET(IPTRK,'STATE-VECTOR',JPAR)
         NANIS_TRK=JPAR(6)
         NDIM=JPAR(16)
         INSB=JPAR(22)
         CALL LCMLEN(IPTRK,'KEYCUR$MCCG',ICREB,ITYLCM)
         IF(ICREB.GT.0) THEN
            CALL LCMLEN(IPTRK,'NZON$MCCG',ILONG,ITYLCM)
            NNN=ILONG-ICREB
            ALLOCATE(KEYCUR(NSOUT),V(ILONG),MATALB(ILONG))
            CALL LCMGET(IPTRK,'KEYCUR$MCCG',KEYCUR)
            CALL LCMGET(IPTRK,'V$MCCG',V)
            CALL LCMGET(IPTRK,'ALBEDO',ALBEDO)
            CALL LCMGET(IPTRK,'NZON$MCCG',MATALB)
         ENDIF
      ELSE IF(CXDOOR.EQ.'SN') THEN
         CALL LCMGET(IPTRK,'STATE-VECTOR',JPAR)
         ITYPE=JPAR(6)
         NDIM=JPAR(9)
         LX=JPAR(12)
         LY=JPAR(13)
         INSB=JPAR(27)
         IBFP=JPAR(31)
         NFOU=JPAR(34)
      ENDIF
*----
*  SELECT THE CALCULATION DOORS FOR WHICH A GROUP-BY-GROUP SCALAR
*  PROCEDURE WILL BE USED. A VECTORIAL APPROACH WILL BE USED WITH
*  OTHER DOORS. LSCAL is true for CXDOOR = 'TRAFIC'.
*----
      LSCAL=(INSB.EQ.0)
*
      CALL KDRCPU(CPU0)
      IF(ILEAK.LT.6) THEN
        INORM=1
      ELSE IF(ILEAK.EQ.6) THEN
        INORM=2 ! Ecco
      ELSE IF(ILEAK.GE.7) THEN
        INORM=3 ! Tibere
      ENDIF
      LEXAC=.FALSE.
      AKEEP(5)=1.0D0
      AKEEP(6)=1.0D0
      AKEEP(7)=1.0D0
      DIFHET(:NMERG,:NGRP)=0.0
      GAMMA(:NGRP)=1.0
*----
*  EXTERNAL FLUX(:,:,2) INITIALISATION AND FIXED-EXTERNAL SOURCE IN
*  FLUX(:,:,4)
*----
      IF(ITYPEC.GE.3) THEN
         CALL LCMGET(IPFLUX,'B2  B1HOM',B2(4))
         IF(ILEAK.GE.7) CALL LCMGET(IPFLUX,'B2  HETE',B2)
      ELSE
         B2(:4)=0.0
      ENDIF
      AKEFFO=0.0D0
      IF(LFORW) THEN
         IF(ITYPEC.EQ.1) THEN
           J1=LCMGID(IPSOU,'DSOUR')
           JPSOU=LCMGIL(J1,IGPT)
           J1=LCMGID(IPFLUX,'DFLUX')
           JPFLUX=LCMGIL(J1,IGPT)
         ELSE
           IF(C_ASSOCIATED(IPSOU)) THEN
             J1=LCMGID(IPSOU,'DSOUR')
             JPSOU=LCMGIL(J1,1)
           ENDIF
           JPFLUX=LCMGID(IPFLUX,'FLUX')
           JPSOUR=LCMLID(IPFLUX,'SOUR',NGRP)
         ENDIF
      ELSE
         IF(ITYPEC.EQ.1) THEN
           J1=LCMGID(IPSOU,'ASOUR')
           JPSOU=LCMGIL(J1,IGPT)
           J1=LCMGID(IPFLUX,'ADFLUX')
           JPFLUX=LCMGIL(J1,IGPT)
         ELSE
           IF(C_ASSOCIATED(IPSOU)) THEN
             J1=LCMGID(IPSOU,'ASOUR')
             JPSOU=LCMGIL(J1,1)
           ENDIF
           JPFLUX=LCMGID(IPFLUX,'AFLUX')
           JPSOUR=LCMLID(IPFLUX,'SOUR',NGRP)
         ENDIF
      ENDIF
      ALLOCATE(FXSOR(0:NMAT))
      JPMACR=LCMGID(IPMACR,'GROUP')
      DO 20 IG=1,NGRP
      FLUX(:NUNKNO,IG,2)=0.0
      FLUX(:NUNKNO,IG,4)=0.0
      CALL LCMLEL(JPFLUX,1,ILINIT,ITYLCM)
      IF(LFORW) THEN
         CALL LCMGDL(JPFLUX,IG,FLUX(1,IG,2))
      ELSE
         CALL LCMGDL(JPFLUX,NGRP-IG+1,FLUX(1,IG,2))
      ENDIF
*
      IF(((ITYPEC.EQ.0).OR.(ITYPEC.EQ.-2)).AND.
     1 (.NOT.C_ASSOCIATED(IPSOU))) THEN
         KPMACR=LCMGIL(JPMACR,IG)
         FXSOR(0)=0.0
         CALL LCMGET(KPMACR,'FIXE',FXSOR(1))
         CALL DOORS(CXDOOR,IPTRK,NMAT,0,NUNKNO,FXSOR,
     >   FLUX(1,IG,4))
      ELSE IF(((ITYPEC.EQ.0).OR.(ITYPEC.EQ.1).OR.(ITYPEC.EQ.-2))
     1 .AND.C_ASSOCIATED(IPSOU))THEN
         IF(LFORW) THEN
            CALL LCMGDL(JPSOU,IG,FLUX(1,IG,4))
         ELSE
            CALL LCMGDL(JPSOU,NGRP-IG+1,FLUX(1,IG,4))
         ENDIF
      ENDIF
   20 CONTINUE
      DEALLOCATE(FXSOR)
*-------
*  IF IMPORTED FLUX PRESENT FOR SN, REORDER FLUX.
*-------
      IF((CXDOOR.EQ.'SN').AND.(INITFL.EQ.2)) THEN
         CALL LCMLEN(IPFLUX,'KEYFLX',ILINIT,ITYLCM)
         IF(ILINIT.NE.NREG) THEN
            WRITE(*,*) NREG, ILINIT
            CALL XABORT('FLU2DR: NUMBER OF REGIONS FROM SPN CALCULATION'
     1      //' (OBTAINED FROM LENGTH OF KEYFLX) DOES NOT MATCH NUMBER '
     2      //'OF REGIONS IN SN CALCULATION. CHECK INPUT FILE FOR '
     3      //'POTENTIAL ERRORS.')
         ENDIF
         KEYSPN(:) = 0
         CALL LCMGET(IPFLUX,'KEYFLX',KEYSPN)
         DO 25 IG=1,NGRP
            CALL SNEST(IPTRK,IPRT,NREG,NUNKNO,MATCOD,IG,KEYFLX,KEYSPN,
     1      FLUX(:,IG,2))
   25    CONTINUE
      ENDIF
*----
*  FOURIER ANALYSIS FLUX INITIALISATION
*----
      ALLOCATE(ARRAYRHO1(NFOU**NDIM))
      ARRAYRHO1(:)=0.0
      IFACOUNT=-1
   26 IFACOUNT=IFACOUNT+1
*
      IF(ITYPEC.EQ.-2) THEN
         IF(NFOU.EQ.0)
     >      CALL XABORT('FLU2DR: NEED TO SPECIFY FOURIER ANALYSIS '
     >      //'KEYWORD NFOU IN TRACKING, AS WELL AS NUMBER OF '
     >      //'FREQUENCIES TO INVESTIGATE.')
         IF(CXDOOR.NE.'SN')
     >      CALL XABORT('FLU2DR: FOURIER ANALYSIS ONLY MEANT FOR SN')
         IF(NGRP.NE.1)
     >      CALL XABORT('FLU2DR: FOURIER ANALYSIS NOT MEANT FOR MULTI-'
     >      //'GROUP PROBLEMS. CONSIDER ADDING THAT FUNCTIONALITY. ')
         IGR=1

         FLUX(:,:,:) = 0.0

         SUMXSTRC=0.0
         DO IR=1,NREG
            SUMXSTRC = SUMXSTRC + XSTRC(MATCOD(IR),1)
         ENDDO
         AVXSTRC = (SUMXSTRC/NREG)

         ALLOCATE(XXX(LX+1))
         CALL LCMGET(IPTRK,'XXX',XXX)
         CALL LCMGET(IPTRK,'XLEN',XLEN)

         OMEGA = (2*PI)/(XLEN*AVXSTRC)
         EKKK  =(REAL(IFACOUNT)/NFOU)

         IF(ITYPE.EQ.2)THEN
            PARTX=0.0
            DO IX=1,LX
               PARTX = XXX(IX) + ((XXX(IX+1)-XXX(IX))/2)
               IND=KEYFLX(IX,1,1)
               IF(IND.GT.0)
     >            FLUX(IND,IGR,2) = COS(EKKK*OMEGA*AVXSTRC*PARTX)
            ENDDO
         ELSE
            CALL XABORT('FLU2DR: FOURIER ANALYSIS FOR GEOMETRIES OTHER '
     >         //'THAN CARTESIAN 1D NOT AVAILABLE.')
         ENDIF
         DEALLOCATE(XXX)
      ENDIF
*----
*  COMPUTE FIRST K-EFFECTIVE
*----
      IF((ITYPEC.EQ.0).OR.(ITYPEC.EQ.5).OR.(ITYPEC.EQ.-2)) THEN
         AKEFFO=1.0D0
         AKEFF=1.0D0
         AFLNOR=1.0D0
      ELSE IF(ITYPEC.EQ.1) THEN
         CALL LCMGET(IPFLUP,'STATE-VECTOR',JPAR)
         IF(JPAR(6).GE.2) THEN
            CALL LCMGET(IPFLUP,'K-EFFECTIVE',RKEFF)
            CALL LCMGET(IPFLUP,'K-INFINITY',CUREIN)
         ENDIF
         AKEFF=RKEFF
         IF(JPAR(6).GE.3) THEN
            B2(:4)=0.0
            CALL LCMGET(IPFLUP,'B2  B1HOM',B2(4))
         ENDIF
         IF((JPAR(6).GT.2).AND.(JPAR(7).GE.6)) THEN
            CALL LCMGET(IPFLUP,'B2  HETE',B2)
         ENDIF
         IF((JPAR(6).GT.2).AND.(JPAR(7).GE.5)) THEN
            CALL LCMGET(IPFLUP,'GAMMA',GAMMA)
         ENDIF
         AKEFFO=AKEFF
         AKEEP(2)=AKEFF
         AFLNOR=1.0D0/RKEFF
      ELSE
         OLDBIL=0.0D0
         CALL FLUKEF(IPRT,IPMACR,NGRP,NREG,NUNKNO,NMAT,NIFIS,NANIS,
     1   MATCOD(1),VOL,KEYFLX(1,1,1),XSTRC,XSDIA,XSNUF,XSCHI,NMERG,
     2   IMERG,DIFHET,FLUX(1,1,2),B2,ILEAK,LEAKSW,OLDBIL,AKEFF,AFLNOR)
         AKEFFO=AKEFF
         AKEEP(2)=AKEFF
      ENDIF
      B2VALO=B2(4)
*
      NCTOT=NCPTA+NCPTL
      IF(NCPTA.EQ.0) THEN
         NCPTM=NCTOT+1
      ELSE
         NCPTM=NCPTL
      ENDIF
      MESSOU='     '
      IF(IPRT.GT.0) WRITE(6,1090) 0,1.0,EPSOUT,AKEFFO,B2(4)
*----
*  CALCULATION OF THE INITIAL LEAKAGE COEFFICIENTS
*----
      IF(ITYPEC.GT.2) THEN
         DIFHET(:NMERG,:NGRP)=0.0
         IF(OPTION.EQ.'LKRD') THEN
            CALL LCMGET(IPMACR,'STATE-VECTOR',JPAR)
            IF(JPAR(2).NE.NMAT) THEN
               CALL XABORT('FLU2DR: INVALID NMAT IN THE MACROLIB.')
            ELSE IF(JPAR(9).NE.1) THEN
               CALL XABORT('FLU2DR: INVALID LEAKAGE IN THE MACROLIB.')
            ENDIF
            ALLOCATE(FL(NMAT),DFL(NMAT))
            JPMACR=LCMGID(IPMACR,'GROUP')
            DO IG=1,NGRP
               KPMACR=LCMGIL(JPMACR,IG)
               CALL LCMLEN(KPMACR,'DIFF',ILONG,ITYLCM)
               IF(ILONG.EQ.0) CALL XABORT('FLU2DR: UNABLE TO RECOVER T'
     >         //'HE DIFF RECORD IN THE MACROLIB OBJECT.')
               IF(NMERG.EQ.NMAT) THEN
                 CALL LCMGET(KPMACR,'DIFF',DIFHET(1,IG))
               ELSE
                 CALL LCMGET(KPMACR,'DIFF',DFL)
                 CALL LCMGET(KPMACR,'FLUX-INTG',FL)
                 DO INM=1,NMERG
                   DDELN1=0.D0
                   DDELD1=0.D0
                   DO IBM=1,NMAT
                     IF(IMERG(IBM).EQ.INM) THEN
                       DDELN1=DDELN1+FL(IBM)/DFL(IBM)
                       DDELD1=DDELD1+FL(IBM)
                     ENDIF
                   ENDDO
                   IF(DDELN1.EQ.0.D0) CALL XABORT('FLU2DR: DDELN1=0.')
                   DIFHET(INM,IG)=REAL(DDELD1/DDELN1)
                 ENDDO
               ENDIF
            ENDDO
            DEALLOCATE(DFL,FL)
            GAMMA(:NGRP)=1.0
         ELSE IF(OPTION.EQ.'RHS') THEN
            CALL LCMLEN(IPFLUX,'DIFFHET',ILONG,ITYLCM)
            IF(ILONG.EQ.NMERG*NGRP) THEN
              IF(LFORW) THEN
                 CALL LCMGET(IPFLUX,'DIFFHET',DIFHET)
              ELSE
*                Permute the diffusion coefficients if the LKRD option
*                is set for an adjoint calculation
                 CALL LCMGET(IPFLUX,'DIFFHET',DIFHET)
                 DO INM=1,NMERG
                   GAMMA(:NGRP)=DIFHET(INM,:NGRP)
                   DO IG=1,NGRP
                     DIFHET(INM,IG)=GAMMA(NGRP-IG+1)
                   ENDDO
                 ENDDO
              ENDIF
            ELSE
               CALL XABORT('FLU2DR: UNABLE TO RECOVER THE DIFFHET RECO'
     >         //'RD IN THE FLUX OBJECT.(1)')
            ENDIF
            GAMMA(:NGRP)=1.0
         ELSE IF((LEAKSW).OR.(ILEAK.EQ.5)) THEN
*           Todorova heterogeneous leakage model.
            CALL FLULPN(IPMACR,NUNKNO,OPTION,'DIFF',NGRP,NREG,NMAT,
     1      VOL,MATCOD,NMERG,IMERG,KEYFLX(1,1,1),FLUX(1,1,2),B2(4),
     2      IPRT,DIFHET,DHOM)
            GAMMA(:NGRP)=1.0
         ELSE
*           FUNDAMENTAL MODE CONDITION.
            IF(NMERG.NE.1) CALL XABORT('FLU2DR: ONE LEAKAGE ZONE EXPEC'
     1      //'TED.(1)')
            CALL B1HOM(IPMACR,LEAKSW,NUNKNO,OPTION,'DIFF',NGRP,NREG,
     1      NMAT,NIFIS,VOL,MATCOD,KEYFLX(1,1,1),FLUX(1,1,2),REFKEF,
     2      IPRT,DIFHET(1,1),GAMMA,AKEFF,INORM,B2)
         ENDIF
         CALL LCMPUT(IPFLUX,'B2  B1HOM',1,2,B2(4))
         CALL LCMPUT(IPFLUX,'DIFFHET',NMERG*NGRP,2,DIFHET)
      ENDIF
*
****  OUTER LOOP  ******************************************
      IGDEB=1
      CFLI=.FALSE.
      CEXE=.FALSE.
      DO 400 IT=1,MAXOUT
      CALL KDRCPU(CPU1)
      MESSIN='     '
*----
*  FISSION SOURCE CALCULATION IN FLUX(:,:,4)
*----
      IF(((ITYPEC.EQ.0).OR.(ITYPEC.EQ.-2))
     1   .AND.(.NOT.C_ASSOCIATED(IPSOU))) THEN
        ALLOCATE(FXSOR(0:NMAT))
        JPMACR=LCMGID(IPMACR,'GROUP')
        FLUX(:NUNKNO,:NGRP,4)=0.0
        DO IG=1,NGRP
          KPMACR=LCMGIL(JPMACR,IG)
          FXSOR(0)=0.0
          CALL LCMGET(KPMACR,'FIXE',FXSOR(1))
          CALL DOORS(CXDOOR,IPTRK,NMAT,0,NUNKNO,FXSOR,
     >    FLUX(1,IG,4))
        ENDDO
        DEALLOCATE(FXSOR)
      ELSE IF((ITYPEC.EQ.0).OR.(ITYPEC.EQ.-2)) THEN
        DO IG=1,NGRP
          IF(LFORW) THEN
            CALL LCMGDL(JPSOU,IG,FLUX(1,IG,4))
          ELSE
            CALL LCMGDL(JPSOU,NGRP-IG+1,FLUX(1,IG,4))
          ENDIF
        ENDDO
      ELSE IF(ITYPEC.EQ.1) THEN
        DO IG=1,NGRP
          IF(LFORW) THEN
            CALL LCMGDL(JPSOU,IG,FLUX(1,IG,4))
          ELSE
            CALL LCMGDL(JPSOU,NGRP-IG+1,FLUX(1,IG,4))
          ENDIF
          DO IUN=1,NUNKNO
            FLUX(IUN,IG,4)=-FLUX(IUN,IG,4)
          ENDDO
        ENDDO
      ELSE
        FLUX(:NUNKNO,:NGRP,4)=0.0
      ENDIF
      IF(NIFIS.GT.0) THEN
        IF(CXDOOR.EQ.'BIVAC') THEN
          CALL BIVFIS(IPTRK,NREG,NMAT,NIFIS,NUNKNO,NGRP,MATCOD,VOL,
     >    XSCHI,XSNUF,FLUX(1,1,2),FLUX(1,1,4))
        ELSE IF(CXDOOR.EQ.'TRIVAC') THEN
          CALL TRIFIS(IPTRK,NREG,NMAT,NIFIS,NUNKNO,NGRP,MATCOD,VOL,
     >    XSCHI,XSNUF,FLUX(1,1,2),FLUX(1,1,4))
        ELSE
          ALLOCATE(FXSOR(NUNKNO))
          DO IS=1,NIFIS
            FXSOR(:NUNKNO)=0.0
            DO IG=1,NGRP
              CALL DOORS(CXDOOR,IPTRK,NMAT,0,NUNKNO,XSNUF(0,IS,IG),
     >        FXSOR,FLUX(1,IG,2))
            ENDDO
            DO IR=1,NREG
              IBM=MATCOD(IR)
              IF(IBM.EQ.0) CYCLE
              DO IE=1,NLIN
                IND=KEYFLX(IR,IE,1)
                IF(IND.EQ.0) CYCLE
                DO IG=1,NGRP
                  FLUX(IND,IG,4)=FLUX(IND,IG,4)+XSCHI(IBM,IS,IG)*
     >            FXSOR(IND)
                ENDDO
              ENDDO
            ENDDO
          ENDDO ! IS
          DEALLOCATE(FXSOR)
        ENDIF
        FLUX(:NUNKNO,:NGRP,4)=FLUX(:NUNKNO,:NGRP,4)*REAL(AFLNOR)
      ENDIF
*----
*  VOLUME-INTEGRATED SOURCE CALCULATION FOR USE IN NEUTRON BALANCE
*----
      DO IG=1,NGRP
        XCSOU(IG)=0.0D0
        DO IR=1,NREG
          IND=KEYFLX(IR,1,1)
          IF((CXDOOR.EQ.'BIVAC').OR.(CXDOOR.EQ.'TRIVAC')) THEN
            ! volumes are already included in the sources
            IF(IND.GT.0) XCSOU(IG)=XCSOU(IG)+FLUX(IND,IG,4)
          ELSE
            IF(IND.GT.0) XCSOU(IG)=XCSOU(IG)+FLUX(IND,IG,4)*VOL(IR)
          ENDIF
        ENDDO
      ENDDO
      ISBS=-1
      IF(C_ASSOCIATED(IPSOU)) CALL LCMLEN(IPSOU,'NBS',ISBS,ITYLCM)
*----
*  SET THE STARTING ENERGY GROUP
*----
      DO 40 IG=1,NGRP
      IGDEB=IG
      IF(XCSOU(IG).NE.0.0.OR.ISBS.NE.0) GO TO 50
   40 CONTINUE
*----
*  DOWNLOAD FROM EXTERNAL FLUX(:,:,2) TO PRESENT INTERNAL FLUX(:,:,6)
*----
   50 FLUX(:NUNKNO,:NGRP,6)=FLUX(:NUNKNO,:NGRP,2)
*
****  INNER LOOP  ******************************************
      DO 270 JT=1,MAXINR
      FLUX(:NUNKNO,IGDEB:NGRP,7)=FLUX(:NUNKNO,IGDEB:NGRP,6)
      FLUX(:NUNKNO,IGDEB:NGRP,8)=FLUX(:NUNKNO,IGDEB:NGRP,4)
      JPMACR=LCMGID(IPMACR,'GROUP')
      DO 140 IG=IGDEB,NGRP
*----
*  PROCESS SELF-SCATTERING REDUCTION IN INNER SOURCES.
*----
      IF((ITPIJ.EQ.2).OR.(ITPIJ.EQ.4)) THEN
         IF((CXDOOR.EQ.'BIVAC').OR.(CXDOOR.EQ.'TRIVAC')) THEN
            CALL XABORT('FLU2DR: SCATTERING REDUCTION IS MANDATORY.')
         ENDIF
         CALL DOORS(CXDOOR,IPTRK,NMAT,NANIS,NUNKNO,XSDIA(0,0,IG),
     >   FLUX(1,IG,8),FLUX(1,IG,7))
      ENDIF
      IF(ILEAK.EQ.6) THEN
*        ECCO ISOTROPIC STREAMING MODEL.
         CCLBD=0.0
         IF((ITPIJ.EQ.1).OR.(ITPIJ.EQ.3).AND.(OPTION.EQ.'B1')) 
     >    CCLBD=1.0-GAMMA(IG)    
         DO 75 IE=1,NLIN
         DO 70 IR=1,NREG
         IBM=MATCOD(IR)
         IND=NUNKNO/2+KEYFLX(IR,IE,1)
         IF(IND.EQ.NUNKNO/2) GO TO 70
         IF(OPTION(2:2).EQ.'1') THEN
*           B1 OR P1 CASE.
            IF(ITPIJ.EQ.2) THEN
               FLUX(IND,IG,8)=FLUX(IND,IG,8)+XSDIA(IBM,1,IG)*
     >         FLUX(IND,IG,7)
            ENDIF
         ELSE IF(ITPIJ.EQ.1) THEN
*           B0, P0, B0TR OR P0TR CASE.
            FLUX(IND,IG,8)=FLUX(IND,IG,8)-XSDIA(IBM,1,IG)*
     >      FLUX(IND,IG,7)*GAMMA(IG)
         ENDIF
         FLUX(IND,IG,8)=FLUX(IND,IG,8)+CCLBD*XSDIA(IBM,1,IG)*
     >   FLUX(IND,IG,7)
  70     CONTINUE
  75     CONTINUE
      ELSE IF(ILEAK.GE.7) THEN
*        TIBERE ANISOTROPIC STREAMING MODEL.
         CCLBD=0.0
         IF((ITPIJ.EQ.3).AND.(OPTION.EQ.'B1')) CCLBD=1.0-GAMMA(IG)
         DO 86 IE=1,NLIN
         DO 85 IR=1,NREG
         IND0=KEYFLX(IR,IE,1)
         IF(IND0.EQ.0) GO TO 85
         IBM=MATCOD(IR)
         INDD(1)=NUNKNO/4+IND0
         INDD(2)=NUNKNO/2+IND0
         INDD(3)=3*NUNKNO/4+IND0
         DO 80 IDIR=1,3
         IND=INDD(IDIR)
         IF(OPTION(2:2).EQ.'1') THEN
*           B1 OR P1 CASE.
            IF(ITPIJ.EQ.4) THEN
               FLUX(IND,IG,8)=FLUX(IND,IG,8)+XSDIA(IBM,1,IG)*
     >         FLUX(IND,IG,7)
            ENDIF
         ELSE IF(ITPIJ.EQ.3) THEN
*           B0, P0, B0TR OR P0TR CASE.
            FLUX(IND,IG,8)=FLUX(IND,IG,8)-XSDIA(IBM,1,IG)*
     >      FLUX(IND,IG,7)*GAMMA(IG)
         ENDIF
         FLUX(IND,IG,8)=FLUX(IND,IG,8)+CCLBD*XSDIA(IBM,1,IG)*
     >   FLUX(IND,IG,7)
  80     CONTINUE
  85     CONTINUE
  86     CONTINUE
      ENDIF
*----
*  COMPUTE INNER SOURCES ASSUMING SELF-SCATTERING REDUCTION.
*----
      IF(.NOT.LSCAL) THEN 
         KPMACR=LCMGIL(JPMACR,IG)
         NUNK2=NUNKNO
         IF(ILEAK.EQ.6) NUNK2=NUNKNO/2
         IF(ILEAK.GE.7) NUNK2=NUNKNO/4
         IF((CXDOOR.EQ.'SN').AND.(IBFP.EQ.0)) THEN
            NUNK2=NUNKNO
            CALL SNSOUR(NUNKNO,IG,IPTRK,KPMACR,NANIS,NREG,NMAT,NUNK2,
     1      NGRP,MATCOD,FLUX(1,1,7),FLUX(1,1,8))
         ELSE IF(CXDOOR.EQ.'SN') THEN
            NUNK2=NUNKNO
            IPSTR=LCMGID(IPSYS,'STREAMING')
            JPSTR=LCMGID(IPSTR,'GROUP')
            KPSYS=LCMGIL(JPSTR,IG)
            CALL SNSBFP(IG,IPTRK,KPMACR,KPSYS,NANIS,NLF,NREG,NMAT,
     1      NUNK2,NGRP,MATCOD,FLUX(1,1,7),FLUX(1,1,8))
         ELSE
            HLEAK='      '
            CALL FLUSOU(CXDOOR,HLEAK,NUNKNO,IG,IPTRK,KPMACR,NMAT,NANIS,
     1      NUNK2,NGRP,FLUX(1,1,7),FLUX(1,1,8))
         ENDIF
         IF((ILEAK.EQ.6).AND.(OPTION(2:2).EQ.'1')) THEN
*           ECCO ISOTROPIC STREAMING MODEL.
            HLEAK='ECCO  '
            CALL FLUSOU(CXDOOR,HLEAK,NUNKNO,IG,IPTRK,KPMACR,NMAT,NANIS,
     1      NUNK2,NGRP,FLUX(1,1,7),FLUX(1,1,8))
         ELSE IF(ILEAK.GE.7) THEN
*           TIBERE ANISOTROPIC STREAMING MODEL.
            HLEAK='TIBERE'
            CALL FLUSOU(CXDOOR,HLEAK,NUNKNO,IG,IPTRK,KPMACR,NMAT,NANIS,
     1      NUNK2,NGRP,FLUX(1,1,7),FLUX(1,1,8))
         ENDIF
      ENDIF
  140 CONTINUE
*----
*  FLUX COMPUTATION
*----
      NPSYS(:NGRP)=0
      DO 150 IG=IGDEB,NGRP
      NPSYS(IG)=IG
  150 CONTINUE
      JPSTR=C_NULL_PTR
      IF(C_ASSOCIATED(IPSYS)) THEN
         JPSYS=LCMGID(IPSYS,'GROUP')
         IF(ILEAK.EQ.6.OR.((MOD(ILEAK,10).EQ.7).AND.(IPHASE.EQ.1))) THEN
            IPSTR=LCMGID(IPSYS,'STREAMING')
            JPSTR=LCMGID(IPSTR,'GROUP')
         ENDIF
      ENDIF
      IF((.NOT.LSCAL).AND.(ILEAK.EQ.0)) THEN
         IDIR=0
         CALL DOORFV(CXDOOR,JPSYS,NPSYS,IPTRK,IFTRAK,IPRT,NGRP,
     1   NMAT,IDIR,NREG,NUNKNO,IPHASE,LEXAC,MATCOD,VOL,KEYFLX,TITLE,
     2   FLUX(1,1,8),FLUX(1,1,7),IPREB,IPSOU,REBFLG,FLUXC,EVALRHO)
      ELSE IF(.NOT.LSCAL) THEN
         CALL FLUDBV(CXDOOR,IPHASE,JPSYS,JPSTR,NPSYS,IPTRK,IFTRAK,
     1   IPRT,NREG,NUNKNO,NFUNL,NGRP,NMAT,NANIS,LEXAC,MATCOD,VOL,KEYFLX,
     2   TITLE,ILEAK,LEAKSW,XSTRC,XSDIA,B2,NMERG,IMERG,DIFHET,GAMMA,
     3   FLUX(1,1,2),FLUX(1,1,8),FLUX(1,1,7),IPREB,IPSOU,REBFLG,FLUXC)
      ELSE
*        A GROUP-BY-GROUP SCALAR PROCEDURE IS BEEN USED.
         IF(.NOT.C_ASSOCIATED(IPSYS)) THEN
            CALL XABORT('FLU2DR: MISSING L_PIJ OBJECT.')
         ENDIF
         KPSTR=C_NULL_PTR
         DO 230 IG=IGDEB,NGRP
         IF(IPRT.GT.10) WRITE(6,'(/25H FLU2DR: PROCESSING GROUP,I5,
     >   6H WITH ,A,1H.)') IG,CXDOOR
         KPMACR=LCMGIL(JPMACR,IG)
         NUNK2=NUNKNO
         IF(ILEAK.EQ.6) NUNK2=NUNKNO/2
         IF(ILEAK.GE.7) NUNK2=NUNKNO/4
         IF(CXDOOR.EQ.'BIVAC') THEN
            CALL BIVSOU(NUNKNO,IG,IPTRK,KPMACR,NANIS,NREG,NMAT,NUNK2,
     1      NGRP,MATCOD,VOL,FLUX(1,1,7),FLUX(1,1,8))
         ELSE IF(CXDOOR.EQ.'TRIVAC') THEN
            CALL TRIVSO(NUNKNO,IG,IPTRK,KPMACR,NANIS,NREG,NMAT,NUNK2,
     1      NGRP,MATCOD,VOL,FLUX(1,1,7),FLUX(1,1,8))
         ELSE IF((CXDOOR.EQ.'SN').AND.(IBFP.EQ.0)) THEN
            CALL SNSOUR(NUNKNO,IG,IPTRK,KPMACR,NANIS,NREG,NMAT,NUNK2,
     1      NGRP,MATCOD,FLUX(1,1,7),FLUX(1,1,8))
         ELSE IF(CXDOOR.EQ.'SN') THEN
            JPSYS=LCMGID(IPSYS,'GROUP')
            KPSYS=LCMGIL(JPSYS,IG)
            CALL SNSBFP(IG,IPTRK,KPMACR,KPSYS,NANIS,NLF,NREG,NMAT,
     1      NUNK2,NGRP,MATCOD,FLUX(1,1,7),FLUX(1,1,8))
         ELSE
            HLEAK='      '
            CALL FLUSOU(CXDOOR,HLEAK,NUNKNO,IG,IPTRK,KPMACR,NMAT,NANIS,
     1      NUNK2,NGRP,FLUX(1,1,7),FLUX(1,1,8))
         ENDIF
         IF((ILEAK.EQ.6).AND.(OPTION(2:2).EQ.'1')) THEN
*           ECCO ISOTROPIC STREAMING MODEL.
            HLEAK='ECCO  '
            CALL FLUSOU(CXDOOR,HLEAK,NUNKNO,IG,IPTRK,KPMACR,NMAT,NANIS,
     1      NUNK2,NGRP,FLUX(1,1,7),FLUX(1,1,8))
         ELSE IF(ILEAK.GE.7) THEN
*           TIBERE ANISOTROPIC STREAMING MODEL.
            HLEAK='TIBERE'
            CALL FLUSOU(CXDOOR,HLEAK,NUNKNO,IG,IPTRK,KPMACR,NMAT,NANIS,
     1      NUNK2,NGRP,FLUX(1,1,7),FLUX(1,1,8))
         ENDIF
*
         NPSYS(:NGRP)=0
         NPSYS(IG)=IG
         IF(ILEAK.EQ.0) THEN
           IDIR=0
           CALL DOORFV(CXDOOR,JPSYS,NPSYS,IPTRK,IFTRAK,IPRT,NGRP,
     1     NMAT,IDIR,NREG,NUNKNO,IPHASE,LEXAC,MATCOD,VOL,KEYFLX,TITLE,
     2     FLUX(1,1,8),FLUX(1,1,7),IPREB,IPSOU,REBFLG,FLUXC,EVALRHO)
         ELSE
           CALL FLUDBV(CXDOOR,IPHASE,JPSYS,JPSTR,NPSYS,IPTRK,IFTRAK,
     1     IPRT,NREG,NUNKNO,NFUNL,NGRP,NMAT,NANIS,LEXAC,MATCOD,VOL,
     2     KEYFLX,TITLE,ILEAK,LEAKSW,XSTRC,XSDIA,B2,NMERG,IMERG,DIFHET,
     3     GAMMA,FLUX(1,1,2),FLUX(1,1,8),FLUX(1,1,7),IPREB,IPSOU,REBFLG,
     4     FLUXC)
         ENDIF
  230    CONTINUE
      ENDIF
      IF(LREBAL.AND.(ITYPEC.NE.5)) THEN
         CALL FLUBAL(IPMACR,NGRP,ILEAK,NMAT,NREG,ICREB,NUNKNO,NANIS,
     1   MATCOD,VOL,KEYFLX(1,1,1),XSTRC,XSDIA,XCSOU,IGDEB,B2,NMERG,
     2   IMERG,DIFHET,KEYCUR,MATALB(NNN+1),ALBEDO,V(NNN+1),FLUX(1,1,7))
      ENDIF
*----
*  ACCELERATING INNER ITERATIONS CYCLICALLY DEPENDING ON PARAM.
*----
      IF(MOD(JT-1,NCTOT).GE.NCPTM) THEN
         CALL FLU2AC(NGRP,NUNKNO,IGDEB,FLUX(1,1,5),AKEEP(5),ZMU)
      ELSE
         ZMU=1.0
      ENDIF
*----
*  CALCULATING ERROR AND PREC BETWEEN PRESENT AND NEW FLUX FOR
*  EACH GROUP. RETAIN LARGEST ERROR BETWEEN ANY GROUP.
*----
      EINN=0.0
      ICHAR=ICHAR+1
      ICTOT=ICTOT+NGRP-IGDEB+1
      IGDEBO=IGDEB
      DO 260 IG=IGDEBO,NGRP
      GINN=0.0
      FINN=0.0
      DO 240 IR=1,NREG
      IND=KEYFLX(IR,1,1)
      IF(IND.EQ.0) GO TO 240
      GINN=MAX(GINN,ABS(FLUX(IND,IG,6)-FLUX(IND,IG,7)))
      FINN=MAX(FINN,ABS(FLUX(IND,IG,7)))
  240 CONTINUE
      FLUX(:NUNKNO,IG,5)=FLUX(:NUNKNO,IG,6)
      FLUX(:NUNKNO,IG,6)=FLUX(:NUNKNO,IG,7)
      GINN=GINN/FINN
      IF((GINN.LT.EPSINR).AND.(IGDEB.EQ.IG)) THEN
         IGDEB=IGDEB+1
      ELSEIF((IGDEB.EQ.IG).AND.(IG.LT.NGRP)) THEN
         ERRDEB1=GINN
      ENDIF
      EINN=MAX(EINN,GINN)
  260 CONTINUE
*
      ITERF=JT
      IF(IPRT.GT.0) WRITE(6,1080) JT,EINN,EPSINR,IGDEB,ZMU
      IF((IPRT.GT.0).AND.(IGDEB.GT.1).AND.(IGDEB.LE.NGRP)) THEN
         WRITE(6,1082) ERRDEB1 
      ENDIF
      IF(EINN.LT.EPSINR) THEN
*        thermal convergence is reached
         CFLI=CEXE
         GOTO 280
      ENDIF
*     near convergence (eps < 10.0 criterion) a new outer iteration
*     is started
      IF((IGDEB.GT.1).AND.(EINN.LT.10.*EPSINR)) GOTO 281
  270 CONTINUE
      MESSIN='*NOT*'
****  END OF INNER LOOP  ******************************************
*
  281 MESSIN='*NEARLY*'
  280 IF(LREBAL) THEN
         IF(LEAKSW) THEN
            IF(ICREB.EQ.0) THEN
               WRITE(6,*) ' *** INCOMPATIBILITY ON LEAKAGE SWITCH ***'
               CALL XABORT('FLU2DR: ERROR ON LEAKAGE SWITCH')
            ELSE
               IF(IPRT.GT.0) 
     &            WRITE(6,*) 'FLU2DR: LEAKAGE & ICREB -> REBALANCING ON'
            ENDIF
         ELSE
            IF(IPRT.GT.0) 
     &         WRITE(6,*) 'FLU2DR: NO LEAKAGE-> REBALANCING ON'
         ENDIF
      ELSE
         IF(IPRT.GT.0) WRITE(6,*) 'FLU2DR:    LEAKAGE-> REBALANCING OFF'
      ENDIF
      CALL KDRCPU(CPU2)
      IF(IPRT.GT.0) WRITE(6,1040) CPU2-CPU1,'INTERNAL',MESSIN,ITERF
*----
*  PROMOTE FROM NEW INTERNAL FLUX(,,,7) TO NEW EXTERNAL FLUX(,,,3)
*----
      FLUX(:NUNKNO,:NGRP,3)=FLUX(:NUNKNO,:NGRP,7)
      FLUX(:NUNKNO,:NGRP,4)=FLUX(:NUNKNO,:NGRP,8)
*----
*  HOTELLING DEFLATION IN GPT CASES.
*----
      IF(ITYPEC.EQ.1) THEN
        JPFLUP1=LCMGID(IPFLUP,'FLUX')
        JPFLUP2=LCMGID(IPFLUP,'AFLUX')
        DDELN1=0.0D0
        DDELD1=0.0D0
        DO 300 IG=1,NGRP
        IF(LFORW) THEN
          CALL LCMGDL(JPFLUP1,IG,FLUX(1,IG,5)) ! EVECT
          CALL LCMGDL(JPFLUP2,IG,FLUX(1,IG,6)) ! ADECT
        ELSE
          CALL LCMGDL(JPFLUP2,NGRP-IG+1,FLUX(1,IG,5)) ! ADECT
          CALL LCMGDL(JPFLUP1,NGRP-IG+1,FLUX(1,IG,6)) ! EVECT
        ENDIF
  300   CONTINUE
        FLUX(:NUNKNO,:NGRP,7)=0.0
        IF(CXDOOR.EQ.'BIVAC') THEN
          CALL BIVFIS(IPTRK,NREG,NMAT,NIFIS,NUNKNO,NGRP,MATCOD,VOL,
     >    XSCHI,XSNUF,FLUX(1,1,6),FLUX(1,1,7))
        ELSE IF(CXDOOR.EQ.'TRIVAC') THEN
          CALL TRIFIS(IPTRK,NREG,NMAT,NIFIS,NUNKNO,NGRP,MATCOD,VOL,
     >    XSCHI,XSNUF,FLUX(1,1,6),FLUX(1,1,7))
        ELSE
          ALLOCATE(FXSOR(NUNKNO))
          DO IS=1,NIFIS
            FXSOR(:NUNKNO)=0.0
            DO IG=1,NGRP
              CALL DOORS(CXDOOR,IPTRK,NMAT,0,NUNKNO,XSNUF(0,IS,IG),
     >        FXSOR,FLUX(1,IG,6))
            ENDDO
            DO IR=1,NREG
              IBM=MATCOD(IR)
              IF(IBM.EQ.0) CYCLE
              DO IE=1,NLIN
                IND=KEYFLX(IR,IE,1)
                IF(IND.EQ.0) CYCLE
                DO IG=1,NGRP
                  FLUX(IND,IG,7)=FLUX(IND,IG,7)+XSCHI(IBM,IS,IG)*
     >            FXSOR(IND)
                ENDDO
              ENDDO
            ENDDO
          ENDDO ! IS
          DEALLOCATE(FXSOR)
        ENDIF
*
        DO 335 IG=1,NGRP
        DO 330 IND=1,NUNKNO
        DDELN1=DDELN1+FLUX(IND,IG,7)*FLUX(IND,IG,3)
        DDELD1=DDELD1+FLUX(IND,IG,7)*FLUX(IND,IG,5)
  330   CONTINUE
  335   CONTINUE
        DO 345 IG=1,NGRP
        DO 340 IND=1,NUNKNO
        FLUX(IND,IG,3)=FLUX(IND,IG,3)-REAL(DDELN1/DDELD1)*FLUX(IND,IG,5)
  340   CONTINUE
  345   CONTINUE
      ENDIF
*
      IF(ITYPEC.EQ.2) THEN
*         NO B-N LEAKAGE CALCULATION REQUIRED
          IF(B2(4).NE.0.0) CALL XABORT('FLU2DR: NON ZERO BUCKLING.')
          CALL FLUKEF(IPRT,IPMACR,NGRP,NREG,NUNKNO,NMAT,NIFIS,NANIS,
     1    MATCOD(1),VOL,KEYFLX(1,1,1),XSTRC,XSDIA,XSNUF,XSCHI,NMERG,
     2    IMERG,DIFHET,FLUX(1,1,3),B2,ILEAK,LEAKSW,OLDBIL,AKEFF,AFLNOR)
      ELSE IF(ITYPEC.GT.2) THEN
*        PERFORM LEAKAGE CALCULATION.
         CALL LCMLEN(IPFLUX,'DIFFHET',ILONG,ITYLCM)
         IF(ILONG.EQ.0) THEN
            CALL XABORT('FLU2DR: UNABLE TO RECOVER THE DIFFHET RECORD '
     1      //'IN THE FLUX OBJECT.(2)')
         ENDIF
         CALL LCMGET(IPFLUX,'DIFFHET',DIFHET)
         GAMMA(:NGRP)=1.0
         IF(ILEAK.EQ.5) THEN
*           Todorova heterogeneous leakage model.
            CALL FLULPN(IPMACR,NUNKNO,OPTION,HTYPE(ITYPEC),NGRP,NREG,
     1      NMAT,VOL,MATCOD,NMERG,IMERG,KEYFLX(1,1,1),FLUX(1,1,3),B2(4),
     2      IPRT,DIFHET,DHOM)
            IF(.NOT.LEAKSW) THEN
              CALL B1HOM(IPMACR,LEAKSW,NUNKNO,'LKRD',HTYPE(ITYPEC),NGRP,
     1        NREG,NMAT,NIFIS,VOL,MATCOD,KEYFLX(1,1,1),FLUX(1,1,3),
     2        REFKEF,IPRT,DHOM(1),GAMMA,AKEFF,INORM,B2)
              GO TO 350
            ENDIF
         ENDIF
         IF(LEAKSW) THEN
            IF(HTYPE(ITYPEC).NE.'K') THEN
              CALL XABORT('FLU2DR: TYPE K EXPECTED WITH OPEN GEOMETRY.')
            ENDIF
            JPMACR=LCMGID(IPMACR,'GROUP')
            ALLOCATE(SFNU(NMAT,NIFIS))
            PROD=0.0D0
            DO IGR=1,NGRP
              KPMACR=LCMGIL(JPMACR,IGR)
              SFNU(:NMAT,:NIFIS)=0.0
              IF(NIFIS.GT.0) CALL LCMGET(KPMACR,'NUSIGF',SFNU)
              DO IBM=1,NMAT
                FLXIN=0.0D0
                DO I=1,NREG
                  IND=KEYFLX(I,1,1)
                  IF((MATCOD(I).EQ.IBM).AND.(IND.GT.0)) THEN
                    FLXIN=FLXIN+FLUX(IND,IGR,3)*VOL(I)
                  ENDIF
                ENDDO
                DO NF=1,NIFIS
                  PROD=PROD+SFNU(IBM,NF)*FLXIN
                ENDDO
              ENDDO
            ENDDO
            DEALLOCATE(SFNU)
            AKEFF=AKEFF*PROD/OLDBIL
            OLDBIL=PROD
            IF(IPRT.GT.0) WRITE (6,1150) B2(4),AKEFF
         ELSE
*           FUNDAMENTAL MODE CONDITION.
            IF(NMERG.NE.1) CALL XABORT('FLU2DR: ONE LEAKAGE ZONE EXPEC'
     1      //'TED.(2)')
            CALL B1HOM(IPMACR,LEAKSW,NUNKNO,OPTION,HTYPE(ITYPEC),NGRP,
     1      NREG,NMAT,NIFIS,VOL,MATCOD,KEYFLX(1,1,1),FLUX(1,1,3),
     2      REFKEF,IPRT,DIFHET(1,1),GAMMA,AKEFF,INORM,B2)
            IF(ILEAK.GE.7) THEN
*              COMPUTE THE DIRECTIONNAL BUCKLING COMPONENTS FOR TIBERE.
               IHETL=ILEAK/10-1
               IF(IHETL.GT.0) THEN
                  CALL FLUBLN(IPMACR,IPRT,NGRP,NMAT,NREG,NUNKNO,NIFIS,
     1            MATCOD,VOL,KEYFLX(1,1,1),FLUX(1,1,3),IHETL,REFKEF,B2)
               ENDIF
             ENDIF
          ENDIF
  350     CALL LCMPUT(IPFLUX,'B2  B1HOM',1,2,B2(4))
          CALL LCMPUT(IPFLUX,'DIFFHET',NMERG*NGRP,2,DIFHET)
      ENDIF
      IF(ITYPEC.GE.3) THEN
         IF(B2(4).EQ.0.0) THEN
           BFLNOR=1.0D0
         ELSE
           BFLNOR=1.0D0/ABS(B2(4))
         ENDIF
         EEXT=REAL(ABS(B2(4)-B2VALO)*BFLNOR)
         B2VALO=B2(4)
      ENDIF
      IEXTF=IT
      IF((ITYPEC.GT.1).AND.(ITYPEC.LT.5)) THEN
         IF(AKEFF.NE.0.0) AFLNOR=1.0D0/AKEFF
         EEXT=REAL(ABS(AKEFF-AKEFFO)/AKEFF)
      ELSE
         EEXT=0.0
      ENDIF
      AKEEP(3)=AKEFF
*----
*  ACCELERATING INNER ITERATIONS CYCLICALLY DEPENDING ON PARAM.
*----
      IF(MOD(IT-1,NCTOT).GE.NCPTM) THEN
         CALL FLU2AC(NGRP,NUNKNO,1,FLUX(1,1,1),AKEEP(1),ZMU)
      ELSE
         ZMU=1.0
      ENDIF
*
      EINN=0.0
      IF(IPRT.GT.0) WRITE(6,1090) IT,EEXT,EPSOUT,AKEFF,B2(4)
      IF(EEXT.LT.EPSOUT) THEN
*        COMPARE FLUX FOR OUTER ITERATIONS
         DO 370 IG=1,NGRP
         GINN=0.0
         FINN=0.0
         DO 360 IR=1,NREG
         IND=KEYFLX(IR,1,1)
         IF(IND.EQ.0) GO TO 360
         GINN=MAX(GINN,ABS(FLUX(IND,IG,2)-FLUX(IND,IG,3)))
         FINN=MAX(FINN,ABS(FLUX(IND,IG,3)))
  360    CONTINUE
         FLUX(:NUNKNO,IG,1)=FLUX(:NUNKNO,IG,2)
         FLUX(:NUNKNO,IG,2)=FLUX(:NUNKNO,IG,3)
         GINN=GINN/FINN
         EINN=MAX(EINN,GINN)
  370    CONTINUE
         IF(IPRT.GT.0) WRITE(6,1100) IT,EINN,EPSUNK,AFLNOR,ZMU
         CEXE=.TRUE.
      ELSE
         FLUX(:NUNKNO,:NGRP,1)=FLUX(:NUNKNO,:NGRP,2)
         FLUX(:NUNKNO,:NGRP,2)=FLUX(:NUNKNO,:NGRP,3)
         IF(IPRT.GT.0) WRITE(6,1110) IT,AFLNOR,ZMU
      ENDIF
      IF((ITYPEC.GE.2).AND.(AKEFF.NE.0.0)) THEN
         AFLNOR=(AKEFF/AKEEP(3))*AFLNOR
      ENDIF
      AKEEP(1)=AKEEP(2)
      AKEEP(2)=AKEEP(3)
*----
*  UPDATE KEFF
*----
      AKEFFO=AKEFF
      IF((EEXT.LT.EPSOUT).AND.(EINN.LT.EPSUNK).AND.(IT.GE.2)) GO TO 410
  400 CONTINUE
      WRITE(6,*) '*** FLU2DR: CONVERGENCE NOT REACHED ***'
      WRITE(6,*) '*** FLU2DR: CONVERGENCE NOT REACHED ***'
      WRITE(6,*) '*** FLU2DR: CONVERGENCE NOT REACHED ***'
      MESSOU='*NOT*'
*
****  CONVERGENCE REACHED  ******************************************
  410 RKEFF=REAL(AKEFF)
      IF(IPRT.GE.3) THEN
         WRITE(6,1010) (IR,IR=1,NREG)
         ALLOCATE(FL(NREG))
         DO 425 IG=1,NGRP
         WRITE(6,1070) IG
         FL(:NREG)=0.0
         DO 420 IR=1,NREG
         IND=KEYFLX(IR,1,1)
         IF(IND.GT.0) FL(IR)=FLUX(IND,IG,3)
  420    CONTINUE
         WRITE(6,1020) (FL(IR),IR=1,NREG)
  425    CONTINUE
         DEALLOCATE(FL)
      ENDIF
      IF(IPRT.GE.4) THEN
         ALLOCATE(FL(NREG))
         DO 445 IG=1,NGRP
         WRITE(6,1070) IG
         DO 440 IA=2,NFUNL
         FL(:NREG)=0.0
         DO 430 IR=1,NREG
         IND=KEYFLX(IR,1,IA)
         IF(IND.GT.0) FL(IR)=FLUX(IND,IG,3)
  430    CONTINUE
         WRITE(6,1030) IA,(FL(IR),IR=1,NREG)
  440    CONTINUE
  445    CONTINUE
         DEALLOCATE(FL)
      ENDIF
*----
*  COMPUTE K-INF
*----
      IF(ITYPEC.GE.2) THEN
        FISOUR=0.0D0
        OLDBIL=0.0D0
        DO 490 IG=1,NGRP
        DO 460 IR=1,NREG
        IND=KEYFLX(IR,1,1)
        IF(IND.EQ.0) GO TO 460
        DO 450 IS=1,NIFIS
        FISOUR=FISOUR+XSNUF(MATCOD(IR),IS,IG)*FLUX(IND,IG,3)*VOL(IR)
  450   CONTINUE
        OLDBIL=OLDBIL+XSTRC(MATCOD(IR),IG)*FLUX(IND,IG,3)*VOL(IR)
  460   CONTINUE
        KPMACR=LCMGIL(JPMACR,IG)
        CALL LCMGET(KPMACR,'NJJS00',NJJ(1))
        CALL LCMGET(KPMACR,'IJJS00',IJJ(1))
        CALL LCMGET(KPMACR,'IPOS00',IPOS(1))
        CALL LCMGET(KPMACR,'SCAT00',XSCAT(1))
        DO 480 IR=1,NREG
        IBM=MATCOD(IR)
        IF(IBM.GT.0) THEN
          IND=KEYFLX(IR,1,1)
          JG=IJJ(IBM)
          DO 470 JND=1,NJJ(IBM)
          IF(JG.EQ.IG) THEN
            OLDBIL=OLDBIL-XSDIA(IBM,0,IG)*FLUX(IND,JG,3)*VOL(IR)
          ELSE
            OLDBIL=OLDBIL-XSCAT(IPOS(IBM)+JND-1)*FLUX(IND,JG,3)*VOL(IR)
          ENDIF
          JG=JG-1
  470     CONTINUE
        ENDIF
  480   CONTINUE
  490   CONTINUE
        CUREIN=0.0
        IF(FISOUR.NE.0.0) CUREIN=REAL(FISOUR/OLDBIL)
*
*       FLUX NORMALIZATION TO KEFF.
        IF(ITYPEC.LT.5) THEN
          FLUX(:NUNKNO,:NGRP,3)=FLUX(:NUNKNO,:NGRP,3)*REAL(AKEFF/FISOUR)
          FLUX(:NUNKNO,:NGRP,4)=FLUX(:NUNKNO,:NGRP,4)*REAL(AKEFF/FISOUR)
        ENDIF
      ENDIF
*----
*  PRINT TIME TAKEN
*----
      CALL KDRCPU(CPU1)
      IF(IPRT.GE.1) WRITE(6,1040) CPU1-CPU0,'EXTERNAL',MESSOU,IEXTF
*----
*  FOURIER ANALYSIS: STORE E-VALUE AND FIND SPECTRAL RADIUS
*----
      IF(ITYPEC.EQ.-2) THEN
         WRITE(6,1130)
         ARRAYRHO1(IFACOUNT+1)=EVALRHO
         IF(IFACOUNT.LT.(NFOU-1)) GO TO 26
         SPECR=MAXVAL(ARRAYRHO1)
         WRITE(6,1140) SPECR
         CALL LCMPUT(IPFLUX,'SPEC-RADIUS',1,2,SPECR)
      ENDIF
      DEALLOCATE(ARRAYRHO1)
*----
*  PRINT TRACKING INFORMATION
*----
      IF(IPRT.GE.1) THEN
         IF((ITYPEC.EQ.0).OR.(ITYPEC.EQ.-2)) THEN
            WRITE(6,1050) ICHAR,EEXT
         ELSE
            WRITE(6,1060) ICHAR,CUREIN,AKEFF,B2(4),EEXT
         ENDIF
         WRITE(6,1120) ICTOT
      ENDIF
*----
*  RELEASE ARRAYS
*----
      IF(CXDOOR.EQ.'MCCG') THEN
         IF(ICREB.GT.0) DEALLOCATE(MATALB,V,KEYCUR)
      ENDIF
*----
*  SAVE THE SOLUTION
*----
      DO 510 IG=1,NGRP
      IF(LFORW) THEN
         CALL LCMPDL(JPFLUX,IG,NUNKNO,2,FLUX(1,IG,3))
         CALL LCMPDL(JPSOUR,IG,NUNKNO,2,FLUX(1,IG,4))
      ELSE
         CALL LCMPDL(JPFLUX,NGRP-IG+1,NUNKNO,2,FLUX(1,IG,3))
         CALL LCMPDL(JPSOUR,NGRP-IG+1,NUNKNO,2,FLUX(1,IG,4))
      ENDIF
  510 CONTINUE
      IF(C_ASSOCIATED(IPSOU)) THEN
        CALL LCMLEN(IPSOU,'NORM-FS',ILEN,ITYLCM)
        IF(ILEN.GT.0) THEN
          CALL LCMGET(IPSOU,'NORM-FS',ZNORM)
          CALL LCMPUT(IPFLUX,'NORM-FS',1,2,ZNORM)
          CALL LCMPUT(IPFLUX,'MATCOD',NREG,1,MATCOD)
        ENDIF
      ENDIF
      IF(IBFP.NE.0) THEN
        CALL LCMGET(IPSYS,'ECUTOFF',ECUTOFF)
        CALL LCMPUT(IPFLUX,'ECUTOFF',1,2,ECUTOFF)
        CALL LCMPUT(IPFLUX,'FLUXC',NREG,2,FLUXC)
      ENDIF
      IF(ITYPEC.GE.2) THEN
         CALL LCMPUT(IPFLUX,'K-EFFECTIVE',1,2,RKEFF)
         CALL LCMPUT(IPFLUX,'K-INFINITY',1,2,CUREIN)
      ENDIF
      IF(ITYPEC.GE.3) THEN
         CALL LCMPUT(IPFLUX,'B2  B1HOM',1,2,B2(4))
      ENDIF
      IF((ITYPEC.GT.2).AND.(ILEAK.GE.7)) THEN
         CALL LCMPUT(IPFLUX,'B2  HETE',3,2,B2)
      ENDIF
      IF((ITYPEC.GT.2).AND.(ILEAK.GE.6)) THEN
         CALL LCMPUT(IPFLUX,'GAMMA',NGRP,2,GAMMA)
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(XCSOU,DIFHET,DHOM,GAMMA,XSCAT,FLUX)
      DEALLOCATE(NPSYS,IPOS,NJJ,IJJ)
      RETURN
*
 1010 FORMAT (/28H FLUXES AVERAGED           :/
     1 (9X,2H/=,I4,:,6X,2H/=,I4,:,6X,2H/=,I4,:,6X,2H/=,I4,:,6X,2H/=,
     2 I4,:,6X,2H/=,I4,:,6X,2H/=,I4,:,6X,2H/=,I4,:,6X,2H/=,I4,:,6X,
     3 2H/=,I4))
 1020 FORMAT (7H FLUX  ,2H: ,1P,10E12.5/(9X,10E12.5))
 1030 FORMAT (5H CUR ,I2,2H: ,1P,10E12.5/(9X,10E12.5))
 1040 FORMAT (18H FLU2DR: CPU TIME=, F10.0,1X,A8,13H CONVERGENCE ,
     1        A8,14H REACHED AFTER ,I6,12H ITERATIONS.  )
 1050 FORMAT (/20H ++ TRACKING CALLED=,I4,6H TIMES ,
     1         11H PRECISION=,E9.2)
 1060 FORMAT (/20H ++ TRACKING CALLED=,I4,6H TIMES ,
     1         12H FINAL KINF=,1P,E13.6,
     2         12H FINAL KEFF=,E13.6,4H B2=,E12.5,
     3         11H PRECISION=,E9.2)
 1070 FORMAT (/14H ENERGY GROUP ,I6)
 1080 FORMAT (10X,3HIN(,I3,6H) FLX:,5H PRC=,1P,E9.2,5H TAR=,E9.2,
     1 7H IGDEB=, I13,6H ACCE=,0P,F12.5)
 1082 FORMAT (18X,28HFIRST UNCONVERGED GROUP PRC=,1P,E9.2)
 1090 FORMAT (5H OUT(,I3,6H) EIG:,5H PRC=,1P,E9.2,5H TAR=,E9.2,
     1 6H KEFF=,E13.6,6H BUCK=,E12.5)
 1100 FORMAT (5H OUT(,I3,6H) FLX:,5H PRC=,1P,E9.2,5H TAR=,E9.2,
     1 6H FNOR=,E13.6,6H ACCE=,0P,F12.5)
 1110 FORMAT (5H OUT(,I3,6H) FLX:,28X,6H FNOR=,1P,E13.6,6H ACCE=,
     1 0P,F12.5)
 1120 FORMAT (38H ++ TOTAL NUMBER OF FLUX CALCULATIONS=,I10)
 1130 FORMAT (24H CONVERGENCE NOT SOUGHT.)
 1140 FORMAT (49H FLU2DR: SPECTRAL RADIUS FOR FOURIER ANALYSIS IS ,
     1 E13.6)
 1150 FORMAT(/18H FLU2DR: BUCKLING=,1P,E13.5,15H K-EFFECTIVE  =,E13.5)
      END