1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
*DECK EVOSIG
SUBROUTINE EVOSIG(IMPX,INR,IGLOB,NGROUP,NBMIX,NBISO,NCOMB,
1 ISONAM,IPISO,DEN,FLUMIX,VX,MILVO,JM,NVAR,NSUPS,NREAC,HREAC,
2 IDR,RER,RRD,FIT,AWR,IZAE,FUELDN,NXSPER,DELTAT,MIXPWR,PFACT,
3 SIG,VPHV)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute and normalize the microscopic depletion reaction rates.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IMPX print flag (equal to zero for no print).
* INR type of flux normalization:
* =0: out-of-core depletion;
* =1: constant flux depletion;
* =2: constant fuel power depletion;
* =3: constant assembly power depletion.
* IGLOB out-of-fuel power in flux normalization. Compute the burnup:
* =-1: using the Serpent mode 0 empirical formula in the fuel;
* =0: using the power released in the fuel;
* =1: using the power released in the global geometry.
* NGROUP number of energy groups.
* NBMIX number of mixtures.
* NBISO number of isotopes/materials including non-depleting ones.
* NCOMB number of depleting mixtures.
* ISONAM alias name of isotopes.
* IPISO pointer array towards microlib isotopes.
* DEN density of each isotope.
* FLUMIX average fluxes in mixtures.
* VX volumes of the depleting mixtures.
* MILVO mixture index corresponding to each depleting mixture.
* JM position in isotope list of each nuclide of the depletion
* chain. A negative value indicates a non-depleting isotope
* producing energy.
* NVAR number of depleting nuclides.
* NSUPS number of non-depleting isotopes producing energy.
* NREAC maximum number of depletion reactions.
* HREAC names of used depletion reactions:
* HREAC(1)='DECAY'; HREAC(2)='NFTOT';
* HREAC(3)='NG' ; HREAC(4)='N2N'; etc.
* IDR identifier for each depleting reaction.
* RER energy (Mev) per reaction. If RER(3,J)=0., the fission energy
* is including radiative capture energy. Neutrino energy is
* never included.
* RRD sum of radioactive decay constants in 10**-8/s.
* FIT flux normalization factor:
* n/cm**2/s if INR=1;
* MW/tonne of initial heavy elements if INR=2;
* W/cc of assembly volume if INR=3.
* AWR mass of the nuclides in unit of neutron mass.
* IZAE 6-digit nuclide identifiers.
* FUELDN fuel initial density and mass.
* NXSPER perturbation order for cross sections.
* DELTAT perturbation coefficients for cross sections.
* MIXPWR flags for mixtures to include in power normalization.
*
*Parameters: output
* PFACT form factor for out-of-fuel power production.
* SIG microscopic reaction rates for nuclide I in mixture IBM:
* SIG(I,1,IBM) fission reaction rate;
* SIG(I,2,IBM) (n,gamma) reaction rate;
* SIG(I,3,IBM) N2N reaction rate;
* ...;
* SIG(I,NREAC,IBM) neutron-induced energy released;
* SIG(I,NREAC+1,IBM) decay energy released (10**-8 MeV/s).
* VPHV integrated fluxes in mixtures.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPISO(NBISO)
INTEGER IMPX,INR,IGLOB,NGROUP,NBMIX,NBISO,NCOMB,ISONAM(3,NBISO),
1 MILVO(NCOMB),JM(NBMIX,NVAR+NSUPS),NVAR,NSUPS,NREAC,
2 HREAC(2,NREAC),IDR(NREAC,NVAR+NSUPS),IZAE(NVAR+NSUPS),NXSPER,
3 MIXPWR(NBMIX)
REAL DEN(NBISO),VX(NBMIX),RER(NREAC,NVAR+NSUPS),RRD(NVAR+NSUPS),
1 FIT,AWR(NVAR+NSUPS),FUELDN(3),DELTAT(2),PFACT,VPHV(NBMIX),
2 SIG(NVAR+1,NREAC+1,NBMIX),FLUMIX(NGROUP,NBMIX)
*----
* LOCAL VARIABLES
*----
PARAMETER(IOUT=6,MAXREA=20)
TYPE(C_PTR) KPLIB,KPLIB5
CHARACTER HSMG*131,NAMDXS(MAXREA)*6
DOUBLE PRECISION GAR,GAR1,GAR2,GARD,XDRCST,EVJ,FITD,PHI,FNORM,VPH
INTEGER IPRLOC
LOGICAL LKERMA
REAL, ALLOCATABLE, DIMENSION(:) :: ZKERMA,ZNFTOT
REAL, ALLOCATABLE, DIMENSION(:,:) :: XSREC
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(XSREC(NGROUP,NREAC-1))
*----
* FIND U235 POSITION IN DECAY CHAIN
*----
IS235=0
IF(IGLOB.EQ.-1) THEN
DO 30 IST=1,NVAR+NSUPS
IF(IZAE(IST).EQ.922350) IS235=IST
30 CONTINUE
IF(IS235.EQ.0) CALL XABORT('EVOSIG: NO U235 INFO(1).')
ENDIF
*----
* COMPUTE MICRO RATES
*----
IPRLOC=0
EVJ=XDRCST('eV','J')*1.0E22
VPH=0.0
VPHV(:NBMIX)=0.0
DO 60 IU=1,NGROUP
DO 40 IBM=1,NBMIX
VPHV(IBM)=VPHV(IBM)+VX(IBM)*FLUMIX(IU,IBM)
40 CONTINUE
DO 50 ICMB=1,NCOMB
IBM=MILVO(ICMB)
IF(IBM.EQ.0) GO TO 50
IF(MIXPWR(IBM).EQ.1) VPH=VPH+VX(IBM)*FLUMIX(IU,IBM)
50 CONTINUE
60 CONTINUE
SIG(:NVAR+1,:NREAC+1,:NBMIX)=0.0
IF(NREAC-1.GT.MAXREA) CALL XABORT('EVOSIG: MAXREA OVERFLOW.')
DO 70 IREAC=2,NREAC
WRITE(NAMDXS(IREAC-1),'(A4,A2)') HREAC(1,IREAC),HREAC(2,IREAC)
70 CONTINUE
DO 220 IBM=1,NBMIX
IF(VX(IBM).EQ.0) GO TO 220
DO 210 IST=1,NVAR+NSUPS
K=JM(IBM,IST)
IF(K.EQ.0) THEN
GO TO 210
ELSE IF(K.GT.0) THEN
* DEPLETING ISOTOPE.
IS=IST
FACT=1.0
ELSE
* STABLE ISOTOPE PRODUCING ENERGY.
K=-K
IS=NVAR+1
FACT=DEN(K)*VX(IBM)
ENDIF
SIG(IS,NREAC+1,IBM)=SIG(IS,NREAC+1,IBM)+FACT*RER(1,IST)*RRD(IST)
IF(INR.EQ.0) GO TO 210
*----
* RECOVER KERMA FACTORS, IF AVAILABLE
*----
KPLIB=IPISO(K) ! set K-th isotope
IF(.NOT.C_ASSOCIATED(KPLIB)) THEN
WRITE(HSMG,'(17HEVOSIG: ISOTOPE '',3A4,19H'' IS NOT AVAILABLE ,
> 16HIN THE MICROLIB.)') (ISONAM(I0,K),I0=1,3)
CALL XABORT(HSMG)
ENDIF
CALL LCMLEN(KPLIB,'H-FACTOR',LENGT,ITYLCM)
LKERMA=LENGT.EQ.NGROUP
IF(LKERMA) THEN
ALLOCATE(ZKERMA(NGROUP))
CALL LCMGET(KPLIB,'H-FACTOR',ZKERMA)
GAR=0.0D0
DO 100 IU=1,NGROUP
GAR=GAR+1.0E-6*DBLE(ZKERMA(IU)*FLUMIX(IU,IBM)) ! convert to MeV
100 CONTINUE
IF(IGLOB.EQ.-1) THEN
! use the empirical EDEPMODE=0 Serpent formula
! R. Tuominen et al., ANE 129 (2019) 224–232.
K=JM(IBM,IS235)
IF(K.EQ.0) CALL XABORT('EVOSIG: NO U235 INFO(2).')
KPLIB5=IPISO(K)
IF(.NOT.C_ASSOCIATED(KPLIB5)) THEN
WRITE(HSMG,'(42HEVOSIG: ISOTOPE U235 IS NOT AVAILABLE IN T,
> 12HHE MICROLIB.)') (ISONAM(I0,K),I0=1,3)
CALL XABORT(HSMG)
ENDIF
ALLOCATE(ZNFTOT(NGROUP))
CALL LCMGET(KPLIB5,'H-FACTOR',ZKERMA)
CALL LCMGET(KPLIB5,'NFTOT',ZNFTOT)
GAR1=0.0D0
GAR2=0.0D0
DO 110 IU=1,NGROUP
GAR1=GAR1+1.0E-6*DBLE(ZKERMA(IU)*FLUMIX(IU,IBM))
GAR2=GAR2+DBLE(ZNFTOT(IU)*FLUMIX(IU,IBM))
110 CONTINUE
GAR=202.27D0*GAR*GAR2/GAR1
DEALLOCATE(ZNFTOT)
ENDIF
SIG(IS,NREAC,IBM)=SIG(IS,NREAC,IBM)+1.0E-3*FACT*REAL(GAR)
DEALLOCATE(ZKERMA)
ELSE
IF((IGLOB.EQ.-1).AND.(AWR(IS).GT.210.0)) THEN
CALL XABORT('EVOSIG: EDP0 OPTION NEEDS H-FACTOR INFORMATION.')
ENDIF
ENDIF
*----
* RECOVER MULTIGROUP XS
*----
DO 150 IXSPER=1,NXSPER
CALL XDRLXS(KPLIB,-1,IPRLOC,NREAC-1,NAMDXS,IXSPER,NGROUP,XSREC)
DO 140 IREAC=2,NREAC
CALL LCMLEN(KPLIB,NAMDXS(IREAC-1),LENGT,ITYLCM)
IF((LENGT.NE.NGROUP).AND.(IDR(IREAC,IST).GT.0)) THEN
IF((IREAC.EQ.2).AND.(MOD(IDR(2,IST),100).EQ.5)) GO TO 120
IF(IMPX.GT.90) CALL LCMLIB(KPLIB)
IF(IMPX.GT.3) THEN
WRITE(HSMG,'(17HEVOSIG: REACTION ,A6,18H IS MISSING FOR IS,
1 7HOTOPE '',3A4,2H''.)') NAMDXS(IREAC-1),(ISONAM(I0,K),I0=1,3)
WRITE(IOUT,'(1X,A)') HSMG
ENDIF
ENDIF
120 GAR=0.0D0
DO 130 IU=1,NGROUP
GAR=GAR+DBLE(XSREC(IU,IREAC-1)*FLUMIX(IU,IBM))
130 CONTINUE
SIG(IS,IREAC-1,IBM)=SIG(IS,IREAC-1,IBM)+1.0E-3*FACT*REAL(GAR)*
1 DELTAT(IXSPER)
! if(LKERMA), add energy from lumped isotopes not present in the
! microlib. Otherwise, add energy for all isotopes.
IF(IGLOB.NE.-1) THEN
! Lumped energy is not included with EDEPMODE=0.
SIG(IS,NREAC,IBM)=SIG(IS,NREAC,IBM)+1.0E-3*FACT*RER(IREAC,IST)*
1 REAL(GAR)*DELTAT(IXSPER)
ENDIF
140 CONTINUE
150 CONTINUE
210 CONTINUE
220 CONTINUE
*----
* CONSTANT FLUX OR CONSTANT POWER NORMALIZATION
*----
PFACT=1.0
PHI=0.0
VTOT=0.0
DO 230 ICMB=1,NCOMB
IBM=MILVO(ICMB)
IF(IBM.EQ.0) GO TO 230
IF(MIXPWR(IBM).EQ.1) VTOT=VTOT+VX(IBM)
230 CONTINUE
IF(INR.EQ.1) THEN
PHI=FIT*1.E-13
ELSE IF(INR.GE.2) THEN
GAR=0.0D0
GARD=0.0D0
DO 245 ICMB=1,NCOMB
IBM=MILVO(ICMB)
IF(IBM.EQ.0) GO TO 245
IF(MIXPWR(IBM).EQ.1) THEN
DO 240 IS=1,NVAR
IF((IGLOB.EQ.-1).AND.(AWR(IS).LE.210.0)) GO TO 240
K=JM(IBM,IS)
IF(K.GT.0) THEN
IF(DEN(K).EQ.0.0) GO TO 240
GAR=GAR+VX(IBM)*DEN(K)*SIG(IS,NREAC,IBM)
GARD=GARD+VX(IBM)*DEN(K)*SIG(IS,NREAC+1,IBM)
ENDIF
240 CONTINUE
ENDIF
245 CONTINUE
GAR1=GAR
DO 250 ICMB=1,NCOMB
IBM=MILVO(ICMB)
IF(IBM.EQ.0) GO TO 250
IF(MIXPWR(IBM).EQ.1) GAR1=GAR1+SIG(NVAR+1,NREAC,IBM)
250 CONTINUE
GAR2=GAR
DO 260 IBM=1,NBMIX
IF(MIXPWR(IBM).EQ.1) GAR2=GAR2+SIG(NVAR+1,NREAC,IBM)
260 CONTINUE
PFACT=REAL(GAR2/GAR1)
IF((IGLOB.EQ.1).OR.(INR.EQ.3)) THEN
GAR=GAR2
ELSE
GAR=GAR1
ENDIF
IF(GAR.EQ.0.0D0) CALL XABORT('EVOSIG: UNABLE TO NORMALIZE.')
IF(INR.EQ.2) THEN
* FITD IS THE DECAY POWER IN WATT PER GRAM.
FITD=(EVJ*GARD)/(FUELDN(1)*VTOT)
IF(FITD.GT.FIT) THEN
WRITE(HSMG,'(35HEVOSIG: NEGATIVE FIT(1) FIT(DECAY)=,1P,
1 E11.4,12H FIT(INPUT)=,E11.4,1H.)') FITD,FIT
CALL XABORT(HSMG)
ENDIF
PHI=(FIT-FITD)*FUELDN(1)*VPH/(EVJ*GAR)
ELSE IF(INR.EQ.3) THEN
* FITD IS THE DECAY POWER IN WATT PER CUBIC CENTIMETER.
FITD=(EVJ*GARD*FUELDN(3))/(FUELDN(1)*VTOT)
IF(FITD.GT.FIT) THEN
WRITE(HSMG,'(35HEVOSIG: NEGATIVE FIT(2) FIT(DECAY)=,1P,
1 E11.4,12H FIT(INPUT)=,E11.4,1H.)') FITD,FIT
CALL XABORT(HSMG)
ENDIF
PHI=(FIT-FITD)*FUELDN(1)*VPH/(EVJ*GAR*FUELDN(3))
ENDIF
ENDIF
IF(IMPX.GT.0) WRITE(IOUT,6000) PHI*1.0E+13
IF(INR.GT.0) THEN
FNORM=PHI*VTOT/VPH
DO 290 IBM=1,NBMIX
VPHV(IBM)=VPHV(IBM)*REAL(FNORM)
DO 280 IQ=1,NREAC
DO 270 IS=1,NVAR+1
SIG(IS,IQ,IBM)=SIG(IS,IQ,IBM)*REAL(FNORM)
270 CONTINUE
280 CONTINUE
290 CONTINUE
ELSE
VPHV(:NBMIX)=0.0
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(XSREC)
RETURN
*
6000 FORMAT(/' EVOSIG: flux level =',1P,E12.4,' n/cm^2/s.')
END
|