summaryrefslogtreecommitdiff
path: root/Dragon/src/EVOSAT.f
blob: b650be8bf3c5a349367281ebcd78a55263e1d282 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
*DECK EVOSAT
      SUBROUTINE EVOSAT(IMPX,MAXA,MAXB,MAXY,LOGY,NSAT,NVAR,KSAT,YST1,
     1 YSAT,MU1,IMA,NSUPF,NFISS,IDIRAC,KFISS,YSF,ADPL,BDPL,NSUPFG)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Lumping of the depletion matrix, fission yields, sources and initial
* conditions to take into account the saturation of depleting nuclides.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IMPX    print parameter.
* MAXA    first dimension of matrices ADPL and AGAR.
* MAXB    first dimension of matrices BDPL, IMA and MU1.
* MAXY    second dimension of matrix YSF.
* LOGY    number of passes through EVOSAT:
*         first pass updates YSAT and YST1;
*         second pass does not update YSAT and YST1.
* NSAT    number of saturating nuclides.
* NVAR    number of nuclides in the complete depletion chain.
* KSAT    position in chain of the saturating nuclides.
* NFISS   number of fissile isotopes producing fission products.
* IDIRAC  saturation model flag (=1 to use Dirac function contributions
*         in the saturating nuclide number densities).
* MU1     position of each diagonal element in vector ADPL.
* IMA     position of the first non-zero column element in vector ADPL.
* NSUPF   number of depleting fission products.
* KFISS   position in chain of the fissile isotopes.
* YSF     product of the fission yields and fission rates.
* ADPL    depletion matrix.
* BDPL    depletion source.
*
*Parameters: input/output
* YST1    number densities for all isotopes as input and of
*         the non-saturated isotopes as output.
*
*Parameters: output
* NSUPFG  number of lumped depleting fission products.
* YSAT    number densities of the saturating isotopes.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER IMPX,MAXA,MAXB,MAXY,LOGY,NSAT,NVAR,KSAT(NSAT),MU1(MAXB),
     1 IMA(MAXB),NSUPF,NFISS,IDIRAC,KFISS(NFISS),NSUPFG
      REAL YST1(NVAR),YSAT(NSAT),YSF(NFISS,MAXY,LOGY),ADPL(MAXA,LOGY),
     1 BDPL(MAXB,LOGY)
*----
*  LOCAL VARIABLES
*----
      PARAMETER(EPS=1.0E-5)
      CHARACTER HSMG*131
      LOGICAL LTEST
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: KEV,MGAR,IGAR
      REAL, ALLOCATABLE, DIMENSION(:) :: YSTG,AGAR,BGAR,GAR
      REAL, ALLOCATABLE, DIMENSION(:,:) :: A22,YSFG
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: A21,A12
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(KEV(NVAR),MGAR(NVAR-NSAT),IGAR(NVAR-NSAT))
      ALLOCATE(YSTG(NVAR-NSAT),A22(NSAT,NSAT),A21(NSAT,NVAR-NSAT,LOGY),
     1 A12(NVAR-NSAT,NSAT,LOGY),AGAR(MAXA),BGAR(NVAR-NSAT),
     2 YSFG(NFISS,NSUPF),GAR(NSAT))
*
      NSUPL=NVAR-NSUPF
      I0=0
      DO 40 I=1,NVAR
      DO 10 II=1,NSAT
      IF(I.EQ.KSAT(II)) GO TO 20
   10 CONTINUE
      I0=I0+1
      KEV(I)=I0
      GO TO 40
   20 DO 25 L=1,LOGY
      IF(ADPL(MU1(I),L).EQ.0.0) CALL XABORT('EVOSAT: ZERO DIAGONAL COM'
     1 //'PONENT FOR A SATURATING ISOTOPE.')
   25 CONTINUE
      DO 30 II=1,NFISS
      IF(I.EQ.KFISS(II)) CALL XABORT('EVOSAT: A FISSILE ISOTOPE IS SAT'
     1 //'URATING.')
   30 CONTINUE
      KEV(I)=0
   40 CONTINUE
      DO 50 I=1,NFISS
      KFISS(I)=KEV(KFISS(I))
   50 CONTINUE
*----
*  FIRST LOOP OVER LOGY
*----
      DO 275 L=1,LOGY
*----
*  COMPUTE MATRICES A22**-1, A21, AND A12
*----
      DO 90 II=1,NSAT
      I=KSAT(II)
      IMAM1=0
      IF(I.GT.1) IMAM1=IMA(I-1)
      DO 60 JJ=1,NSAT
      J=KSAT(JJ)
      IF((J.LE.I).AND.(J.GT.I+IMAM1-MU1(I))) THEN
         A22(II,JJ)=ADPL(MU1(I)-I+J,L)
      ELSE IF((I.LE.J).AND.(I.GE.J-IMA(J)+MU1(J))) THEN
         A22(II,JJ)=ADPL(MU1(J)+J-I,L)
      ELSE
         A22(II,JJ)=0.0
      ENDIF
   60 CONTINUE
      JMAM1=0
      DO 75 J=1,NVAR
      J0=KEV(J)
      IF(J0.EQ.0) GO TO 70
      IF((J.LE.I).AND.(J.GT.I+IMAM1-MU1(I))) THEN
         A21(II,J0,L)=ADPL(MU1(I)-I+J,L)
      ELSE IF((I.LE.J).AND.(I.GE.J-IMA(J)+MU1(J))) THEN
         A21(II,J0,L)=ADPL(MU1(J)+J-I,L)
      ELSE
         A21(II,J0,L)=0.0
      ENDIF
      IF((I.LE.J).AND.(I.GT.J+JMAM1-MU1(J))) THEN
         A12(J0,II,L)=ADPL(MU1(J)-J+I,L)
      ELSE IF((J.LE.I).AND.(J.GE.I-IMA(I)+MU1(I))) THEN
         A12(J0,II,L)=ADPL(MU1(I)+I-J,L)
      ELSE
         A12(J0,II,L)=0.0
      ENDIF
   70 JMAM1=IMA(J)
   75 CONTINUE
      IF(I.GT.NSUPL) THEN
         DO 80 K=1,NFISS
         A21(II,KFISS(K),L)=A21(II,KFISS(K),L)+YSF(K,I-NSUPL,L)
   80    CONTINUE
      ENDIF
   90 CONTINUE
      CALL ALINV(NSAT,A22,NSAT,IER)
      IF(IER.NE.0) CALL XABORT('EVOSAT: SINGULAR MATRIX.')
*----
*  COMPUTE VECTOR YSTG ANT YSAT
*----
      IF(L.EQ.1) THEN
*        BEGINNING-OF-STAGE DIRAC DELTA CONTRIBUTIONS:
         DO 100 I=1,NSAT
         YSAT(I)=YST1(KSAT(I))
  100    CONTINUE
         DO 110 I=1,NVAR
         IF(KEV(I).GT.0) YSTG(KEV(I))=YST1(I)
  110    CONTINUE
         IF(IDIRAC.EQ.0) THEN
            DO 125 I=1,NSAT
            GAR(I)=BDPL(KSAT(I),L)
            DO 120 J=1,NVAR-NSAT
            GAR(I)=GAR(I)+A21(I,J,L)*YSTG(J)
  120       CONTINUE
  125       CONTINUE
            DO 135 I=1,NSAT
            YSAT(I)=0.0
            DO 130 J=1,NSAT
            YSAT(I)=YSAT(I)-A22(I,J)*GAR(J)
  130       CONTINUE
  135       CONTINUE
            GO TO 220
         ENDIF
         ITER=0
  140    ITER=ITER+1
         IF(ITER.GT.50) CALL XABORT('EVOSAT: CONVERGENCE FAILURE.')
         DO 155 I=1,NSAT
         GAR(I)=BDPL(KSAT(I),L)
         DO 150 J=1,NVAR-NSAT
         GAR(I)=GAR(I)+A21(I,J,L)*YSTG(J)
  150    CONTINUE
  155    CONTINUE
         ERR1=0.0
         ERR2=0.0
         DO 170 I=1,NSAT
         ZCOMP=YSAT(I)
         YSAT(I)=0.0
         DO 160 J=1,NSAT
         YSAT(I)=YSAT(I)-A22(I,J)*GAR(J)
  160    CONTINUE
         ERR1=MAX(ERR1,ABS(ZCOMP-YSAT(I)))
         ERR2=MAX(ERR2,ABS(YSAT(I)))
  170    CONTINUE
         DO 185 I=1,NSAT
         GAR(I)=0.0
         DO 180 J=1,NSAT
         GAR(I)=GAR(I)-A22(I,J)*(YST1(KSAT(J))-YSAT(J))
  180    CONTINUE
  185    CONTINUE
         DO 190 I=1,NVAR
         IF(KEV(I).GT.0) YSTG(KEV(I))=YST1(I)
  190    CONTINUE
         DO 210 I=1,NVAR-NSAT
         DO 200 J=1,NSAT
         YSTG(I)=YSTG(I)+A12(I,J,L)*GAR(J)
  200    CONTINUE
         ERR2=MAX(ERR2,ABS(YSTG(I)))
  210    CONTINUE
         IF(ERR1.LE.EPS*ERR2) GO TO 220
         GO TO 140
      ENDIF
*----
*  COMPUTE MATRICES A21 AND BGAR
*----
  220 DO 235 I=1,NSAT
      GAR(I)=0.0
      DO 230 J=1,NSAT
      GAR(I)=GAR(I)-A22(I,J)*BDPL(KSAT(J),L)
  230 CONTINUE
  235 CONTINUE
      BGAR(:NVAR-NSAT)=0.0
      DO 240 I=1,NVAR
      IF(KEV(I).GT.0) BGAR(KEV(I))=BDPL(I,L)
  240 CONTINUE
      DO 255 I=1,NVAR-NSAT
      DO 250 J=1,NSAT
      BGAR(I)=BGAR(I)+A12(I,J,L)*GAR(J)
  250 CONTINUE
  255 CONTINUE
      DO 272 J=1,NVAR-NSAT
      BDPL(J,L)=BGAR(J)
      IF(L.EQ.1) YST1(J)=YSTG(J)
      DO 260 K=1,NSAT
      GAR(K)=A21(K,J,L)
  260 CONTINUE
      DO 271 I=1,NSAT
      A21(I,J,L)=0.0
      DO 270 K=1,NSAT
      A21(I,J,L)=A21(I,J,L)+A22(I,K)*GAR(K)
  270 CONTINUE
  271 CONTINUE
  272 CONTINUE
*
  275 CONTINUE
*----
*  DETERMINE THE PROFILE PATTERN OF THE LUMPED DEPLETION MATRIX.
*----
      NSUPLG=NSUPL
      DO 280 I=1,NVAR
      IF((KEV(I).EQ.0).AND.(I.LE.NSUPL)) NSUPLG=NSUPLG-1
  280 CONTINUE
      NSUPFG=NVAR-NSAT-NSUPLG
      MGAR(:NVAR-NSAT)=1
      IGAR(:NVAR-NSAT)=1
      IMAM1=0
      DO 305 I=1,NVAR
      IKEV=KEV(I)
      IF(IKEV.EQ.0) GO TO 300
      DO 290 J=1,NVAR
      JKEV=KEV(J)
      IF(JKEV.EQ.0) GO TO 290
      IF((J.LE.I).AND.(J.GT.I+IMAM1-MU1(I))) THEN
         MGAR(IKEV)=MAX(MGAR(IKEV),IKEV-JKEV+1)
      ELSE IF((I.LE.J).AND.(I.GE.J-IMA(J)+MU1(J))) THEN
         IGAR(JKEV)=MAX(IGAR(JKEV),JKEV-IKEV+1)
      ENDIF
  290 CONTINUE
  300 IMAM1=IMA(I)
  305 CONTINUE
      DO 335 J=1,NVAR-NSAT
      JIFI=0
      DO 310 IFI=1,NFISS
      IF(J.EQ.KFISS(IFI)) JIFI=IFI
  310 CONTINUE
      DO 330 I=1,NVAR-NSAT
      IF((I.GT.NSUPLG).AND.(JIFI.GT.0)) GO TO 330
      LTEST=.FALSE.
      DO 325 L=1,LOGY
      DO 320 K=1,NSAT
      LTEST=LTEST.OR.(A12(I,K,L)*A21(K,J,L).NE.0.0)
  320 CONTINUE
  325 CONTINUE
      IF(LTEST.AND.(J.LE.I)) THEN
         MGAR(I)=MAX(MGAR(I),I-J+1)
      ELSE IF(LTEST) THEN
         IGAR(J)=MAX(IGAR(J),J-I+1)
      ENDIF
  330 CONTINUE
  335 CONTINUE
      II=0
      DO 340 I=1,NVAR-NSAT
      II=II+MGAR(I)
      MGAR(I)=II
      II=II+IGAR(I)-1
      IGAR(I)=II
  340 CONTINUE
      IF(IMPX.GT.8) WRITE(6,'(/27H EVOSAT: REAL SIZE OF ADPL=,I9,3H AL,
     1 13HLOCATED SIZE=,I9,1H.)') IGAR(NVAR-NSAT),MAXA
      IF(IGAR(NVAR-NSAT).GT.MAXA) THEN
         WRITE(HSMG,'(24HEVOSAT: IGAR(NVAR-NSAT)=,I6,6H MAXA=,I6)')
     1   IGAR(NVAR-NSAT),MAXA
         CALL XABORT(HSMG)
      ENDIF
*----
*  SECOND LOOP OVER LOGY
*----
      DO 540 L=1,LOGY
*----
*  COMPUTE MATRIX AGAR AND YIELDS YSFG.
*----
      AGAR(:IGAR(NVAR-NSAT))=0.0
      IMAM1=0
      DO 445 I=1,NVAR
      IKEV=KEV(I)
      IF(IKEV.EQ.0) GO TO 440
      DO 420 J=1,NVAR
      JKEV=KEV(J)
      IF(JKEV.EQ.0) GO TO 420
      IF((J.LE.I).AND.(J.GT.I+IMAM1-MU1(I))) THEN
         AGAR(MGAR(IKEV)-IKEV+JKEV)=ADPL(MU1(I)-I+J,L)
      ELSE IF((I.LE.J).AND.(I.GE.J-IMA(J)+MU1(J))) THEN
         AGAR(MGAR(JKEV)+JKEV-IKEV)=ADPL(MU1(J)+J-I,L)
      ENDIF
  420 CONTINUE
      IF(I.GT.NSUPL) THEN
         DO 430 K=1,NFISS
         YSFG(K,IKEV-NSUPLG)=YSF(K,I-NSUPL,L)
  430    CONTINUE
      ENDIF
  440 IMAM1=IMA(I)
  445 CONTINUE
      DO 495 J=1,NVAR-NSAT
      JIFI=0
      DO 450 IFI=1,NFISS
      IF(J.EQ.KFISS(IFI)) JIFI=IFI
  450 CONTINUE
      IMAM1=0
      DO 490 I=1,NVAR-NSAT
      IF((I.GT.NSUPLG).AND.(JIFI.GT.0)) GO TO 480
      IF((J.LE.I).AND.(J.GT.I+IMAM1-MGAR(I))) THEN
         DO 460 K=1,NSAT
         AGAR(MGAR(I)-I+J)=AGAR(MGAR(I)-I+J)-A12(I,K,L)*A21(K,J,L)
  460    CONTINUE
      ELSE IF((I.LE.J).AND.(I.GE.J-IGAR(J)+MGAR(J))) THEN
         DO 470 K=1,NSAT
         AGAR(MGAR(J)+J-I)=AGAR(MGAR(J)+J-I)-A12(I,K,L)*A21(K,J,L)
  470    CONTINUE
      ENDIF
  480 IMAM1=IGAR(I)
  490 CONTINUE
  495 CONTINUE
      DO 510 I=NSUPLG+1,NVAR-NSAT
      DO 505 IFI=1,NFISS
      J=KFISS(IFI)
      DO 500 K=1,NSAT
      YSFG(IFI,I-NSUPLG)=YSFG(IFI,I-NSUPLG)-A12(I,K,L)*A21(K,J,L)
  500 CONTINUE
  505 CONTINUE
  510 CONTINUE
*----
*  REPLACE THE ORIGINAL INFORMATION WITH THE LUMPED ONE
*----
      DO 520 I=1,IGAR(NVAR-NSAT)
      ADPL(I,L)=AGAR(I)
  520 CONTINUE
      DO 535 I=1,NFISS
      DO 530 J=1,NSUPFG
      YSF(I,J,L)=YSFG(I,J)
  530 CONTINUE
  535 CONTINUE
  540 CONTINUE
      DO 550 I=1,NVAR-NSAT
      IMA(I)=IGAR(I)
      MU1(I)=MGAR(I)
  550 CONTINUE
      RETURN
      END