summaryrefslogtreecommitdiff
path: root/Dragon/src/EVORK.f
blob: 93758ee0d533421e9f173de30f194a8625753dc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
*DECK EVORK
      SUBROUTINE EVORK(Y,N,X,HTRY,EPS,YSCAL,HDID,HNEXT,MU1,IMA,MAXA,
     1 NSUPF,NFISS,KFISS,YSF,ADPL,BDPL)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Fifth-order Runge-Kutta Cash-Karp step with monitoring of local
* truncation error to ensure accuracy and adjust stepsize.
* Special version for isotopic depletion calculations.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input/output
* Y       dependent variable vector.
* N       size of the dependent variable vector.
* X       independent variable.
* HTRY    stepsize to be attempted.
* EPS     required accuracy.
* YSCAL   vector against which the error is scaled.
* HDID    stepsize that was actually accomplished.
* HNEXT   estimated next stepsize.
* MU1     position of each diagonal element in vectors ADPL and ASS.
* IMA     position of the first non-zero column element in vectors
*         ADPL and ASS.
* MAXA    first dimension of matrix ADPL.
* NSUPF   number of depleting fission products.
* NFISS   number of fissile isotopes producing fission products.
* KFISS   position in chain of the fissile isotopes.
* YSF     components of the product of the fission yields and fission
*         rates.
* ADPL    depletion matrix components.
* BDPL    depletion source components.
*
*Reference:
* W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
* "Numerical recipes in Fortran, Second edition, Chapter 16,
* Cambridge, 1992.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER N,MU1(N),IMA(N),MAXA,NSUPF,NFISS,KFISS(NFISS)
      REAL Y(N),X,HTRY,EPS,YSCAL(N),HDID,HNEXT,YSF(NFISS,NSUPF,2),
     1 ADPL(MAXA,2),BDPL(N,2)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (A2=.2,A3=.3,A4=.6,A5=1.,A6=.875,B21=.2,B31=3./40.,
     *B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54.,B52=2.5,
     *B53=-70./27.,B54=35./27.,B61=1631./55296.,B62=175./512.,
     *B63=575./13824.,B64=44275./110592.,B65=253./4096.,C1=37./378.,
     *C3=250./621.,C4=125./594.,C6=512./1771.,DC1=C1-2825./27648.,
     *DC3=C3-18575./48384.,DC4=C4-13525./55296.,DC5=-277./14336.,
     *DC6=C6-.25)
      PARAMETER (SAFETY=0.85,PGROW=-.2,PSHRNK=-.25,GROW=1.5,SHRNK=0.5)
      CHARACTER HSMG*131
      REAL, ALLOCATABLE, DIMENSION(:) :: YTEMP,YGAR
      REAL, ALLOCATABLE, DIMENSION(:,:) :: AK
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(YTEMP(N),YGAR(N),AK(N,6))
*
      NSUPL=N-NSUPF
      H=HTRY
   10 CALL ALLUM(N,ADPL(1,1),Y(1),AK(1,1),MU1,IMA,1)
      CALL ALLUM(N,ADPL(1,2),Y(1),YGAR(1),MU1,IMA,1)
      DO 25 I=1,NSUPF
      DO 20 J=1,NFISS
      AK(NSUPL+I,1)=AK(NSUPL+I,1)+YSF(J,I,1)*Y(KFISS(J))
      YGAR(NSUPL+I)=YGAR(NSUPL+I)+YSF(J,I,2)*Y(KFISS(J))
   20 CONTINUE
   25 CONTINUE
      DO 30 I=1,N
      AK(I,1)=AK(I,1)+BDPL(I,1)+X*(YGAR(I)+BDPL(I,2))
      YTEMP(I)=Y(I)+H*B21*AK(I,1)
   30 CONTINUE
*
      CALL ALLUM(N,ADPL(1,1),YTEMP(1),AK(1,2),MU1,IMA,1)
      CALL ALLUM(N,ADPL(1,2),YTEMP(1),YGAR(1),MU1,IMA,1)
      DO 45 I=1,NSUPF
      DO 40 J=1,NFISS
      AK(NSUPL+I,2)=AK(NSUPL+I,2)+YSF(J,I,1)*YTEMP(KFISS(J))
      YGAR(NSUPL+I)=YGAR(NSUPL+I)+YSF(J,I,2)*YTEMP(KFISS(J))
   40 CONTINUE
   45 CONTINUE
      DO 50 I=1,N
      AK(I,2)=AK(I,2)+BDPL(I,1)+(X+A2*H)*(YGAR(I)+BDPL(I,2))
      YTEMP(I)=Y(I)+H*(B31*AK(I,1)+B32*AK(I,2))
   50 CONTINUE
*
      CALL ALLUM(N,ADPL(1,1),YTEMP(1),AK(1,3),MU1,IMA,1)
      CALL ALLUM(N,ADPL(1,2),YTEMP(1),YGAR(1),MU1,IMA,1)
      DO 65 I=1,NSUPF
      DO 60 J=1,NFISS
      AK(NSUPL+I,3)=AK(NSUPL+I,3)+YSF(J,I,1)*YTEMP(KFISS(J))
      YGAR(NSUPL+I)=YGAR(NSUPL+I)+YSF(J,I,2)*YTEMP(KFISS(J))
   60 CONTINUE
   65 CONTINUE
      DO 70 I=1,N
      AK(I,3)=AK(I,3)+BDPL(I,1)+(X+A3*H)*(YGAR(I)+BDPL(I,2))
      YTEMP(I)=Y(I)+H*(B41*AK(I,1)+B42*AK(I,2)+B43*AK(I,3))
   70 CONTINUE
*
      CALL ALLUM(N,ADPL(1,1),YTEMP(1),AK(1,4),MU1,IMA,1)
      CALL ALLUM(N,ADPL(1,2),YTEMP(1),YGAR(1),MU1,IMA,1)
      DO 85 I=1,NSUPF
      DO 80 J=1,NFISS
      AK(NSUPL+I,4)=AK(NSUPL+I,4)+YSF(J,I,1)*YTEMP(KFISS(J))
      YGAR(NSUPL+I)=YGAR(NSUPL+I)+YSF(J,I,2)*YTEMP(KFISS(J))
   80 CONTINUE
   85 CONTINUE
      DO 90 I=1,N
      AK(I,4)=AK(I,4)+BDPL(I,1)+(X+A4*H)*(YGAR(I)+BDPL(I,2))
      YTEMP(I)=Y(I)+H*(B51*AK(I,1)+B52*AK(I,2)+B53*AK(I,3)+B54*AK(I,4))
   90 CONTINUE
*
      CALL ALLUM(N,ADPL(1,1),YTEMP(1),AK(1,5),MU1,IMA,1)
      CALL ALLUM(N,ADPL(1,2),YTEMP(1),YGAR(1),MU1,IMA,1)
      DO 105 I=1,NSUPF
      DO 100 J=1,NFISS
      AK(NSUPL+I,5)=AK(NSUPL+I,5)+YSF(J,I,1)*YTEMP(KFISS(J))
      YGAR(NSUPL+I)=YGAR(NSUPL+I)+YSF(J,I,2)*YTEMP(KFISS(J))
  100 CONTINUE
  105 CONTINUE
      DO 110 I=1,N
      AK(I,5)=AK(I,5)+BDPL(I,1)+(X+A5*H)*(YGAR(I)+BDPL(I,2))
      YTEMP(I)=Y(I)+H*(B61*AK(I,1)+B62*AK(I,2)+B63*AK(I,3)+B64*AK(I,4)+
     1 B65*AK(I,5))
  110 CONTINUE
*
      CALL ALLUM(N,ADPL(1,1),YTEMP(1),AK(1,6),MU1,IMA,1)
      CALL ALLUM(N,ADPL(1,2),YTEMP(1),YGAR(1),MU1,IMA,1)
      DO 125 I=1,NSUPF
      DO 120 J=1,NFISS
      AK(NSUPL+I,6)=AK(NSUPL+I,6)+YSF(J,I,1)*YTEMP(KFISS(J))
      YGAR(NSUPL+I)=YGAR(NSUPL+I)+YSF(J,I,2)*YTEMP(KFISS(J))
  120 CONTINUE
  125 CONTINUE
      DO 130 I=1,N
      AK(I,6)=AK(I,6)+BDPL(I,1)+(X+A6*H)*(YGAR(I)+BDPL(I,2))
      YTEMP(I)=Y(I)+H*(C1*AK(I,1)+C3*AK(I,3)+C4*AK(I,4)+C6*AK(I,6))
      YGAR(I)=H*(DC1*AK(I,1)+DC3*AK(I,3)+DC4*AK(I,4)+DC5*AK(I,5)+
     1 DC6*AK(I,6))
  130 CONTINUE
*
      ERRMAX=0.0
      DO 140 I=1,N
      ERRMAX=MAX(ERRMAX,ABS(YGAR(I)/YSCAL(I)))
  140 CONTINUE
      ERRMAX=ERRMAX/EPS
      IF (ERRMAX.EQ.0.0) THEN
        HDID=H
        HNEXT=GROW*H
        X=X+H
        DO 150 I=1,N
        Y(I)=YTEMP(I)
  150   CONTINUE
        GO TO 170
      ELSE IF (ERRMAX.LE.1.0) THEN
        HDID=H
        HNEXT=MIN(GROW,SAFETY*(ERRMAX**PGROW))*H
        X=X+H
        DO 160 I=1,N
        Y(I)=YTEMP(I)
  160   CONTINUE
        GO TO 170
      ELSE
        H=MAX(SHRNK,SAFETY*(ERRMAX**PSHRNK))*H
        XNEW=X+H
        IF (X.EQ.XNEW) THEN
           WRITE(HSMG,'(35HEVORK: STEPSIZE NOT SIGNIFICANT (H=,1P,E11.4,
     1     6H HTRY=,E11.4,2H).)') H,HTRY
           CALL XABORT(HSMG)
        ENDIF
        GO TO 10
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
  170 DEALLOCATE(AK,YGAR,YTEMP)
      RETURN
      END