1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
*DECK EVOMU1
SUBROUTINE EVOMU1(IMPX,NVAR,NREAC,LP,XT,LCOOL,NPAR,KPAR,DCR,SIG1,
1 SIG2,EXPMAX,IEVOLB,MU1,IMA,MAXA)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Determination of the profile of the depletion matrix (not taking into
* account the fission yields).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IMPX print flag (equal to zero for no print).
* NVAR number of nuclides in the complete depletion chain.
* NREAC one plus the number of neutron-induced depletion reactions.
* LP lumping index (set to zero to get rid of unused isotopes).
* XT initial and final value of the independent variable.
* LCOOL out-of-core depletion flag (LCOOL=.true. to set flag).
* NPAR maximum number of parent nuclides in the depletion chain.
* KPAR position in chain of the parent nuclide and type of
* reaction.
* DCR sum of radioactive decay constants in 10**-8/s.
* SIG1 initial reaction rates:
* SIG1(I,1) fission reaction rate for nuclide I;
* SIG1(I,2) gamma reaction rate for nuclide I;
* SIG1(I,3) N2N reaction rate for nuclide I;
* ...;
* SIG1(I,NREAC) neutron-induced energy released for nuclide I;
* SIG1(I,NREAC+1) decay energy released for nuclide I.
* SIG2 final reaction rates.
* EXPMAX saturation limit. A nuclide is saturating if
* -ADPL(MU1(I))*(XT(2)-XT(1)).GT.EXPMAX. Suggested value:
* EXPMAX=80.0.
* IEVOLB flag making an isotope non-depleting:
* =1 to force an isotope to be non-depleting;
* =2 to force an isotope to be depleting;
* =3 to force an isotope to be at saturation.
*
*Parameters: output
* MU1 position of each diagonal element in vector ADPL.
* IMA position of the first non-zero column element in vector ADPL.
* MAXA maximum number of terms in ADPL, taking into account
* saturation.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
LOGICAL LCOOL
INTEGER IMPX,NVAR,NREAC,LP(NVAR),NPAR,KPAR(NPAR,NVAR),
1 IEVOLB(NVAR),MU1(NVAR+1),IMA(NVAR+1),MAXA
REAL XT(2),DCR(NVAR),SIG1(NVAR+1,NREAC+1),SIG2(NVAR+1,NREAC+1),
1 EXPMAX
*----
* LOCAL VARIABLES
*----
LOGICAL LSAT
CHARACTER*2 SHOW(65,65)
INTEGER, ALLOCATABLE, DIMENSION(:) :: IPERM
REAL, ALLOCATABLE, DIMENSION(:) :: DIAG
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IPERM(NVAR),DIAG(NVAR))
*
DO 10 IS=1,NVAR
IF(LP(IS).EQ.0) GO TO 10
MU1(LP(IS))=1
IMA(LP(IS))=1
10 CONTINUE
NVAR2=0
DO 30 IS=1,NVAR
IF(LP(IS).EQ.0) GO TO 30
NVAR2=MAX(NVAR2,LP(IS))
DO 20 K=1,NPAR
IF(KPAR(K,IS).EQ.0) GO TO 30
IF(KPAR(K,IS).EQ.2) GO TO 20
JS=KPAR(K,IS)/100
KT=KPAR(K,IS)-JS*100
IF((LCOOL.AND.(KT.GE.2)).OR.(LP(JS).EQ.0)) GO TO 20
MU1(LP(IS))=MAX(MU1(LP(IS)),LP(IS)-LP(JS)+1)
IMA(LP(JS))=MAX(IMA(LP(JS)),LP(JS)-LP(IS)+1)
20 CONTINUE
30 CONTINUE
*
DO 40 IS=1,NVAR
DIAG(IS)=0.0
IF(LP(IS).EQ.0) GO TO 40
SIGE1=0.0
SIGE2=0.0
IF(.NOT.LCOOL) THEN
DO 35 IREAC=1,NREAC-1
SIGE1=SIGE1+SIG1(IS,IREAC)
SIGE2=SIGE2+SIG2(IS,IREAC)
35 CONTINUE
ENDIF
DIAG(IS)=(MIN(SIGE1,SIGE2)+DCR(IS))*(XT(2)-XT(1))
40 CONTINUE
*----
* COMPUTE THE LUMPING INDEX VECTOR IPERM
*----
DO 50 I=1,NVAR2
IPERM(I)=I
50 CONTINUE
NTER=0
60 NTER=NTER+1
INDSAT=0
DO 70 IS=1,NVAR
IF(LP(IS).GT.0) THEN
LSAT=(IEVOLB(IS).EQ.3).AND.(EXPMAX.GT.0.0)
LSAT=LSAT.OR.((EXPMAX.GT.0.0).AND.(DIAG(IS).GT.EXPMAX))
IF((IPERM(LP(IS)).GE.0).AND.LSAT) THEN
IPERM(LP(IS))=0
IF(INDSAT.EQ.0) THEN
IPERM(LP(IS))=-NTER
INDSAT=LP(IS)
ENDIF
ENDIF
ENDIF
70 CONTINUE
IF(INDSAT.EQ.0) GO TO 100
DO 90 I=INDSAT+1,NVAR2
DO 80 J=MIN(I-MU1(I)+1,I-IMA(I)+1),I-1
IF((IPERM(I).EQ.0).AND.(IPERM(J).EQ.-NTER)) THEN
IPERM(I)=-NTER
GO TO 90
ENDIF
80 CONTINUE
90 CONTINUE
GO TO 60
100 NTER=NTER-1
N=0
DO 110 I=1,NVAR2
IF(IPERM(I).GT.0) THEN
N=N+1
IPERM(I)=N
ENDIF
110 CONTINUE
*
MAXA=0
DO 175 ITER=1,NTER
JMIN=NVAR2
JMAX=1
DO 130 I=1,NVAR2
IF(-IPERM(I).NE.ITER) GO TO 130
DO 120 J=1,NVAR2
IF((J.LE.I).AND.(J.GT.I-MU1(I))) THEN
JMIN=MIN(JMIN,J)
JMAX=MAX(JMAX,J)
ELSE IF((I.LE.J).AND.(I.GT.J-IMA(J))) THEN
JMIN=MIN(JMIN,J)
JMAX=MAX(JMAX,J)
ENDIF
120 CONTINUE
130 CONTINUE
IMIN=NVAR2
IMAX=1
DO 145 I=1,NVAR2
DO 140 J=1,NVAR2
IF(-IPERM(J).NE.ITER) GO TO 140
IF((J.LE.I).AND.(J.GT.I-MU1(I))) THEN
IMIN=MIN(IMIN,I)
IMAX=MAX(IMAX,I)
ELSE IF((I.LE.J).AND.(I.GT.J-IMA(J))) THEN
IMIN=MIN(IMIN,I)
IMAX=MAX(IMAX,I)
ENDIF
140 CONTINUE
145 CONTINUE
DO 170 I=IMIN,IMAX
IF(-IPERM(I).EQ.ITER) GO TO 170
DO 160 J=JMIN,JMAX
IF(-IPERM(J).EQ.ITER) GO TO 160
IF((J.LE.I).AND.(J.GT.I-MU1(I))) GO TO 160
IF((I.LE.J).AND.(I.GE.J-IMA(J))) GO TO 160
MAXA=MAXA+1
160 CONTINUE
170 CONTINUE
175 CONTINUE
*
MAXROW=1
MAXCOL=1
II=0
DO 180 I=1,NVAR2
MAXROW=MAX(MAXROW,MU1(I))
MAXCOL=MAX(MAXCOL,IMA(I))
II=II+MU1(I)
MU1(I)=II
II=II+IMA(I)-1
IMA(I)=II
180 CONTINUE
MAXA=MAXA+IMA(NVAR2)
IF(IMPX.GT.3) WRITE (6,'(/34H EVOMU1: MAXIMUM ROW PROFILE WIDTH,
1 4X,1H=,I5/9X,30HMAXIMUM COLUMN PROFILE WIDTH =,I5)') MAXROW,
2 MAXCOL
IF(IMPX.GT.9) THEN
NVARM=MIN(NVAR2,65)
WRITE (6,'(//34H EVOMU1: DEPLETION MATRIX PROFILE:/)')
DO 195 I=1,NVARM
DO 190 J=1,NVARM
SHOW(I,J)=' '
190 CONTINUE
195 CONTINUE
IMAM1=0
DO 220 I=1,NVARM
DO 200 J=I-MU1(I)+IMAM1+1,I
IF(IPERM(I).GT.0) THEN
SHOW(I,J)='*'
ELSE
SHOW(I,J)='+'
ENDIF
200 CONTINUE
DO 210 J=I-IMA(I)+MU1(I),I
IF(IPERM(J).GT.0) THEN
SHOW(J,I)='*'
ELSE
SHOW(J,I)='+'
ENDIF
210 CONTINUE
IMAM1=IMA(I)
220 CONTINUE
DO 230 I=1,NVARM
WRITE (6,'(1X,65A2)') (SHOW(I,J),J=1,NVARM)
230 CONTINUE
IF(NVAR2.GT.65) WRITE(6,'(18H MATRIX TRUNCATED.)')
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(DIAG,IPERM)
RETURN
END
|