1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
*DECK EVOKAP
SUBROUTINE EVOKAP(Y,N,X,HTRY,EPS,YSCAL,HDID,HNEXT,MU1,IMA,MAXA,
1 NSUPF,NFISS,KFISS,YSF,ADPL,BDPL)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Fourth-order Kaps-Rentrop step for integrating stiff O.D.E.'s, with
* monitoring of local truncation error to adjust stepsize.
* Special version for isotopic depletion calculations.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input/output
* Y dependent variable vector.
* N size of the dependent variable vector.
* X independent variable.
* HTRY stepsize to be attempted.
* EPS required accuracy.
* YSCAL vector against which the error is scaled.
* HDID stepsize that was actually accomplished.
* HNEXT estimated next stepsize.
* MU1 position of each diagonal element in vectors ADPL and ASS.
* IMA position of the first non-zero column element in vectors
* ADPL and ASS.
* MAXA first dimension of matrix ADPL.
* NSUPF number of depleting fission products.
* NFISS number of fissile isotopes producing fission products.
* KFISS position in chain of the fissile isotopes.
* YSF components of the product of the fission yields and fission
* rates.
* ADPL depletion matrix components.
* BDPL depletion source components.
*
*Reference:
* W.H. Press and S.A. Teukolsky, 'Integrating stiff ordinary differen-
* tial equations', Computers in physics, 3 (3), 88 (May/June 1989).
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER N,MU1(N),IMA(N),MAXA,NSUPF,NFISS,KFISS(NFISS)
REAL Y(N),X,HTRY,EPS,YSCAL(N),HDID,HNEXT,YSF(NFISS,NSUPF,2),
1 ADPL(MAXA,2),BDPL(N,2)
*----
* LOCAL VARIABLES
*----
PARAMETER (MAXTRY=40,SAFETY=0.85,GROW=1.5,PGROW=-.25,SHRNK=0.5,
1 PSHRNK=-1./3.)
PARAMETER (GAM=.231,GAM21=-.270629667752/GAM,
1 GAM31=.311254483294/GAM,GAM32=.852445628482E-2/GAM,
2 GAM41=.282816832044/GAM,GAM42=-.457959483281/GAM,
3 GAM43=-.111208333333/GAM,ALF21=.462,ALF31=-.815668168327E-1,
4 ALF32=.961775150166,C1=.217487371653,C2=.486229037990,C3=0.,
5 C4=.296283590357,CC1=-.717088504499,CC2=1.77617912176,
6 CC3=-.590906172617E-1,GAM2X=GAM*(1.+GAM21),
7 GAM3X=GAM*(1.+GAM31+GAM32),GAM4X=GAM*(1.+GAM41+GAM42+GAM43))
CHARACTER HSMG*131
REAL, ALLOCATABLE, DIMENSION(:) :: DYDX,TEMP,YSAV,DYSAV,DFDX,ASS
REAL, ALLOCATABLE, DIMENSION(:,:) :: AK
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(DYDX(N),TEMP(N),YSAV(N),DYSAV(N),DFDX(N),AK(N,4),
1 ASS(IMA(N)))
*
XSAV=X
NSUPL=N-NSUPF
CALL ALLUM(N,ADPL(1,1),Y(1),DYDX(1),MU1,IMA,1)
CALL ALLUM(N,ADPL(1,2),Y(1),TEMP(1),MU1,IMA,1)
DO 15 I=1,NSUPF
DO 10 J=1,NFISS
DYDX(NSUPL+I)=DYDX(NSUPL+I)+YSF(J,I,1)*Y(KFISS(J))
TEMP(NSUPL+I)=TEMP(NSUPL+I)+YSF(J,I,2)*Y(KFISS(J))
10 CONTINUE
15 CONTINUE
DO 20 I=1,N
DYDX(I)=DYDX(I)+X*TEMP(I)+BDPL(I,1)+X*BDPL(I,2)
YSAV(I)=Y(I)
DYSAV(I)=DYDX(I)
20 CONTINUE
H=HTRY
DO 200 JTRY=1,MAXTRY
HSQ=H*H
CALL ALLUM(N,ADPL(1,2),YSAV(1),DFDX(1),MU1,IMA,1)
DO 35 I=1,NSUPF
DO 30 J=1,NFISS
DFDX(NSUPL+I)=DFDX(NSUPL+I)+YSF(J,I,2)*YSAV(KFISS(J))
30 CONTINUE
35 CONTINUE
DO 40 I=1,IMA(N)
ASS(I)=-H*GAM*(ADPL(I,1)+XSAV*ADPL(I,2))
40 CONTINUE
DO 50 I=1,N
DFDX(I)=DFDX(I)+BDPL(I,2)
ASS(MU1(I))=1.+ASS(MU1(I))
50 CONTINUE
CALL ALLUF(N,ASS,MU1,IMA)
DO 60 I=1,N
AK(I,1)=H*DYSAV(I)+HSQ*GAM*DFDX(I)
60 CONTINUE
CALL ALLUS(NSUPL,MU1(1),IMA(1),ASS(1),AK(1,1))
IF(NSUPF.GT.0) THEN
DO 75 I=1,NSUPF
DO 70 J=1,NFISS
AK(NSUPL+I,1)=AK(NSUPL+I,1)+H*GAM*(YSF(J,I,1)+XSAV*YSF(J,I,2))
1 *AK(KFISS(J),1)
70 CONTINUE
75 CONTINUE
CALL ALLUS(NSUPF,MU1(NSUPL+1),IMA(NSUPL+1),ASS(1),AK(NSUPL+1,1))
ENDIF
DO 80 I=1,N
Y(I)=YSAV(I)+ALF21*AK(I,1)
80 CONTINUE
X=XSAV+ALF21*H
CALL ALLUM(N,ADPL(1,1),Y(1),DYDX(1),MU1,IMA,1)
CALL ALLUM(N,ADPL(1,2),Y(1),TEMP(1),MU1,IMA,1)
DO 95 I=1,NSUPF
DO 90 J=1,NFISS
DYDX(NSUPL+I)=DYDX(NSUPL+I)+YSF(J,I,1)*Y(KFISS(J))
TEMP(NSUPL+I)=TEMP(NSUPL+I)+YSF(J,I,2)*Y(KFISS(J))
90 CONTINUE
95 CONTINUE
DO 100 I=1,N
DYDX(I)=DYDX(I)+X*TEMP(I)+BDPL(I,1)+X*BDPL(I,2)
AK(I,2)=H*DYDX(I)+HSQ*GAM2X*DFDX(I)+GAM21*AK(I,1)
100 CONTINUE
CALL ALLUS(NSUPL,MU1(1),IMA(1),ASS(1),AK(1,2))
IF(NSUPF.GT.0) THEN
DO 106 I=1,NSUPF
DO 105 J=1,NFISS
AK(NSUPL+I,2)=AK(NSUPL+I,2)+H*GAM*(YSF(J,I,1)+XSAV*YSF(J,I,2))
1 *AK(KFISS(J),2)
105 CONTINUE
106 CONTINUE
CALL ALLUS(NSUPF,MU1(NSUPL+1),IMA(NSUPL+1),ASS(1),AK(NSUPL+1,2))
ENDIF
DO 110 I=1,N
AK(I,2)=AK(I,2)-GAM21*AK(I,1)
Y(I)=YSAV(I)+ALF31*AK(I,1)+ALF32*AK(I,2)
110 CONTINUE
X=XSAV+(ALF31+ALF32)*H
CALL ALLUM(N,ADPL(1,1),Y(1),DYDX(1),MU1,IMA,1)
CALL ALLUM(N,ADPL(1,2),Y(1),TEMP(1),MU1,IMA,1)
DO 125 I=1,NSUPF
DO 120 J=1,NFISS
DYDX(NSUPL+I)=DYDX(NSUPL+I)+YSF(J,I,1)*Y(KFISS(J))
TEMP(NSUPL+I)=TEMP(NSUPL+I)+YSF(J,I,2)*Y(KFISS(J))
120 CONTINUE
125 CONTINUE
DO 130 I=1,N
DYDX(I)=DYDX(I)+X*TEMP(I)+BDPL(I,1)+X*BDPL(I,2)
TEMP(I)=GAM31*AK(I,1)+GAM32*AK(I,2)
AK(I,3)=H*DYDX(I)+GAM3X*HSQ*DFDX(I)+TEMP(I)
130 CONTINUE
CALL ALLUS(NSUPL,MU1(1),IMA(1),ASS(1),AK(1,3))
IF(NSUPF.GT.0) THEN
DO 136 I=1,NSUPF
DO 135 J=1,NFISS
AK(NSUPL+I,3)=AK(NSUPL+I,3)+H*GAM*(YSF(J,I,1)+XSAV*YSF(J,I,2))
1 *AK(KFISS(J),3)
135 CONTINUE
136 CONTINUE
CALL ALLUS(NSUPF,MU1(NSUPL+1),IMA(NSUPL+1),ASS(1),AK(NSUPL+1,3))
ENDIF
DO 140 I=1,N
AK(I,3)=AK(I,3)-TEMP(I)
TEMP(I)=GAM41*AK(I,1)+GAM42*AK(I,2)+GAM43*AK(I,3)
AK(I,4)=H*DYDX(I)+HSQ*GAM4X*DFDX(I)+TEMP(I)
140 CONTINUE
CALL ALLUS(NSUPL,MU1(1),IMA(1),ASS(1),AK(1,4))
IF(NSUPF.GT.0) THEN
DO 146 I=1,NSUPF
DO 145 J=1,NFISS
AK(NSUPL+I,4)=AK(NSUPL+I,4)+H*GAM*(YSF(J,I,1)+XSAV*YSF(J,I,2))
1 *AK(KFISS(J),4)
145 CONTINUE
146 CONTINUE
CALL ALLUS(NSUPF,MU1(NSUPL+1),IMA(NSUPL+1),ASS(1),AK(NSUPL+1,4))
ENDIF
DO 150 I=1,N
AK(I,4)=AK(I,4)-TEMP(I)
Y(I)=YSAV(I)+C1*AK(I,1)+C2*AK(I,2)+C3*AK(I,3)+C4*AK(I,4)
TEMP(I)=YSAV(I)+CC1*AK(I,1)+CC2*AK(I,2)+CC3*AK(I,3)
150 CONTINUE
X=XSAV+H
IF (X.EQ.XSAV) THEN
WRITE(HSMG,'(36HEVOKAP: STEPSIZE NOT SIGNIFICANT (H=,1P,E11.4,
1 6H HTRY=,E11.4,2H).)') H,HTRY
CALL XABORT(HSMG)
ENDIF
ERRMAX=0.
DO 160 I=1,N
ERRMAX=MAX(ERRMAX,ABS((Y(I)-TEMP(I))/YSCAL(I)))
160 CONTINUE
ERRMAX=ERRMAX/EPS
IF (ERRMAX.EQ.0.) THEN
HDID=H
HNEXT=GROW*H
GO TO 210
ELSE IF (ERRMAX.LE.1.) THEN
HDID=H
HNEXT=MIN(GROW,SAFETY*(ERRMAX**PGROW))*H
GO TO 210
ELSE
H=MAX(SHRNK,SAFETY*(ERRMAX**PSHRNK))*H
ENDIF
200 CONTINUE
CALL XABORT('EVOKAP: EXCEEDED MAXTRY.')
*----
* SCRATCH STORAGE DEALLOCATION
*----
210 DEALLOCATE(ASS,AK,DFDX,DYSAV,YSAV,TEMP,DYDX)
RETURN
END
|