summaryrefslogtreecommitdiff
path: root/Dragon/src/EVOKAP.f
blob: a28023234bd29e540c4a7f50181b172ce0d97436 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
*DECK EVOKAP
      SUBROUTINE EVOKAP(Y,N,X,HTRY,EPS,YSCAL,HDID,HNEXT,MU1,IMA,MAXA,
     1 NSUPF,NFISS,KFISS,YSF,ADPL,BDPL)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Fourth-order Kaps-Rentrop step for integrating stiff O.D.E.'s, with
* monitoring of local truncation error to adjust stepsize.
* Special version for isotopic depletion calculations.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input/output
* Y       dependent variable vector.
* N       size of the dependent variable vector.
* X       independent variable.
* HTRY    stepsize to be attempted.
* EPS     required accuracy.
* YSCAL   vector against which the error is scaled.
* HDID    stepsize that was actually accomplished.
* HNEXT   estimated next stepsize.
* MU1     position of each diagonal element in vectors ADPL and ASS.
* IMA     position of the first non-zero column element in vectors
*         ADPL and ASS.
* MAXA    first dimension of matrix ADPL.
* NSUPF   number of depleting fission products.
* NFISS   number of fissile isotopes producing fission products.
* KFISS   position in chain of the fissile isotopes.
* YSF     components of the product of the fission yields and fission
*         rates.
* ADPL    depletion matrix components.
* BDPL    depletion source components.
*
*Reference:
* W.H. Press and S.A. Teukolsky, 'Integrating stiff ordinary differen-
* tial equations', Computers in physics, 3 (3), 88 (May/June 1989).
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER N,MU1(N),IMA(N),MAXA,NSUPF,NFISS,KFISS(NFISS)
      REAL Y(N),X,HTRY,EPS,YSCAL(N),HDID,HNEXT,YSF(NFISS,NSUPF,2),
     1 ADPL(MAXA,2),BDPL(N,2)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (MAXTRY=40,SAFETY=0.85,GROW=1.5,PGROW=-.25,SHRNK=0.5,
     1 PSHRNK=-1./3.)
      PARAMETER (GAM=.231,GAM21=-.270629667752/GAM,
     1 GAM31=.311254483294/GAM,GAM32=.852445628482E-2/GAM,
     2 GAM41=.282816832044/GAM,GAM42=-.457959483281/GAM,
     3 GAM43=-.111208333333/GAM,ALF21=.462,ALF31=-.815668168327E-1,
     4 ALF32=.961775150166,C1=.217487371653,C2=.486229037990,C3=0.,
     5 C4=.296283590357,CC1=-.717088504499,CC2=1.77617912176,
     6 CC3=-.590906172617E-1,GAM2X=GAM*(1.+GAM21),
     7 GAM3X=GAM*(1.+GAM31+GAM32),GAM4X=GAM*(1.+GAM41+GAM42+GAM43))
      CHARACTER HSMG*131
      REAL, ALLOCATABLE, DIMENSION(:) :: DYDX,TEMP,YSAV,DYSAV,DFDX,ASS
      REAL, ALLOCATABLE, DIMENSION(:,:) :: AK
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(DYDX(N),TEMP(N),YSAV(N),DYSAV(N),DFDX(N),AK(N,4),
     1 ASS(IMA(N)))
*
      XSAV=X
      NSUPL=N-NSUPF
      CALL ALLUM(N,ADPL(1,1),Y(1),DYDX(1),MU1,IMA,1)
      CALL ALLUM(N,ADPL(1,2),Y(1),TEMP(1),MU1,IMA,1)
      DO 15 I=1,NSUPF
      DO 10 J=1,NFISS
      DYDX(NSUPL+I)=DYDX(NSUPL+I)+YSF(J,I,1)*Y(KFISS(J))
      TEMP(NSUPL+I)=TEMP(NSUPL+I)+YSF(J,I,2)*Y(KFISS(J))
   10 CONTINUE
   15 CONTINUE
      DO 20 I=1,N
      DYDX(I)=DYDX(I)+X*TEMP(I)+BDPL(I,1)+X*BDPL(I,2)
      YSAV(I)=Y(I)
      DYSAV(I)=DYDX(I)
   20 CONTINUE
      H=HTRY
      DO 200 JTRY=1,MAXTRY
      HSQ=H*H
      CALL ALLUM(N,ADPL(1,2),YSAV(1),DFDX(1),MU1,IMA,1)
      DO 35 I=1,NSUPF
      DO 30 J=1,NFISS
      DFDX(NSUPL+I)=DFDX(NSUPL+I)+YSF(J,I,2)*YSAV(KFISS(J))
   30 CONTINUE
   35 CONTINUE
      DO 40 I=1,IMA(N)
      ASS(I)=-H*GAM*(ADPL(I,1)+XSAV*ADPL(I,2))
   40 CONTINUE
      DO 50 I=1,N
      DFDX(I)=DFDX(I)+BDPL(I,2)
      ASS(MU1(I))=1.+ASS(MU1(I))
   50 CONTINUE
      CALL ALLUF(N,ASS,MU1,IMA)
      DO 60 I=1,N
      AK(I,1)=H*DYSAV(I)+HSQ*GAM*DFDX(I)
   60 CONTINUE
      CALL ALLUS(NSUPL,MU1(1),IMA(1),ASS(1),AK(1,1))
      IF(NSUPF.GT.0) THEN
        DO 75 I=1,NSUPF
        DO 70 J=1,NFISS
        AK(NSUPL+I,1)=AK(NSUPL+I,1)+H*GAM*(YSF(J,I,1)+XSAV*YSF(J,I,2))
     1  *AK(KFISS(J),1)
   70   CONTINUE
   75   CONTINUE
        CALL ALLUS(NSUPF,MU1(NSUPL+1),IMA(NSUPL+1),ASS(1),AK(NSUPL+1,1))
      ENDIF
      DO 80 I=1,N
      Y(I)=YSAV(I)+ALF21*AK(I,1)
   80 CONTINUE
      X=XSAV+ALF21*H
      CALL ALLUM(N,ADPL(1,1),Y(1),DYDX(1),MU1,IMA,1)
      CALL ALLUM(N,ADPL(1,2),Y(1),TEMP(1),MU1,IMA,1)
      DO 95 I=1,NSUPF
      DO 90 J=1,NFISS
      DYDX(NSUPL+I)=DYDX(NSUPL+I)+YSF(J,I,1)*Y(KFISS(J))
      TEMP(NSUPL+I)=TEMP(NSUPL+I)+YSF(J,I,2)*Y(KFISS(J))
   90 CONTINUE
   95 CONTINUE
      DO 100 I=1,N
      DYDX(I)=DYDX(I)+X*TEMP(I)+BDPL(I,1)+X*BDPL(I,2)
      AK(I,2)=H*DYDX(I)+HSQ*GAM2X*DFDX(I)+GAM21*AK(I,1)
  100 CONTINUE
      CALL ALLUS(NSUPL,MU1(1),IMA(1),ASS(1),AK(1,2))
      IF(NSUPF.GT.0) THEN
        DO 106 I=1,NSUPF
        DO 105 J=1,NFISS
        AK(NSUPL+I,2)=AK(NSUPL+I,2)+H*GAM*(YSF(J,I,1)+XSAV*YSF(J,I,2))
     1  *AK(KFISS(J),2)
  105   CONTINUE
  106   CONTINUE
        CALL ALLUS(NSUPF,MU1(NSUPL+1),IMA(NSUPL+1),ASS(1),AK(NSUPL+1,2))
      ENDIF
      DO 110 I=1,N
      AK(I,2)=AK(I,2)-GAM21*AK(I,1)
      Y(I)=YSAV(I)+ALF31*AK(I,1)+ALF32*AK(I,2)
  110 CONTINUE
      X=XSAV+(ALF31+ALF32)*H
      CALL ALLUM(N,ADPL(1,1),Y(1),DYDX(1),MU1,IMA,1)
      CALL ALLUM(N,ADPL(1,2),Y(1),TEMP(1),MU1,IMA,1)
      DO 125 I=1,NSUPF
      DO 120 J=1,NFISS
      DYDX(NSUPL+I)=DYDX(NSUPL+I)+YSF(J,I,1)*Y(KFISS(J))
      TEMP(NSUPL+I)=TEMP(NSUPL+I)+YSF(J,I,2)*Y(KFISS(J))
  120 CONTINUE
  125 CONTINUE
      DO 130 I=1,N
      DYDX(I)=DYDX(I)+X*TEMP(I)+BDPL(I,1)+X*BDPL(I,2)
      TEMP(I)=GAM31*AK(I,1)+GAM32*AK(I,2)
      AK(I,3)=H*DYDX(I)+GAM3X*HSQ*DFDX(I)+TEMP(I)
  130 CONTINUE
      CALL ALLUS(NSUPL,MU1(1),IMA(1),ASS(1),AK(1,3))
      IF(NSUPF.GT.0) THEN
        DO 136 I=1,NSUPF
        DO 135 J=1,NFISS
        AK(NSUPL+I,3)=AK(NSUPL+I,3)+H*GAM*(YSF(J,I,1)+XSAV*YSF(J,I,2))
     1  *AK(KFISS(J),3)
  135   CONTINUE
  136   CONTINUE
        CALL ALLUS(NSUPF,MU1(NSUPL+1),IMA(NSUPL+1),ASS(1),AK(NSUPL+1,3))
      ENDIF
      DO 140 I=1,N
      AK(I,3)=AK(I,3)-TEMP(I)
      TEMP(I)=GAM41*AK(I,1)+GAM42*AK(I,2)+GAM43*AK(I,3)
      AK(I,4)=H*DYDX(I)+HSQ*GAM4X*DFDX(I)+TEMP(I)
  140 CONTINUE
      CALL ALLUS(NSUPL,MU1(1),IMA(1),ASS(1),AK(1,4))
      IF(NSUPF.GT.0) THEN
        DO 146 I=1,NSUPF
        DO 145 J=1,NFISS
        AK(NSUPL+I,4)=AK(NSUPL+I,4)+H*GAM*(YSF(J,I,1)+XSAV*YSF(J,I,2))
     1  *AK(KFISS(J),4)
  145   CONTINUE
  146   CONTINUE
        CALL ALLUS(NSUPF,MU1(NSUPL+1),IMA(NSUPL+1),ASS(1),AK(NSUPL+1,4))
      ENDIF
      DO 150 I=1,N
      AK(I,4)=AK(I,4)-TEMP(I)
      Y(I)=YSAV(I)+C1*AK(I,1)+C2*AK(I,2)+C3*AK(I,3)+C4*AK(I,4)
      TEMP(I)=YSAV(I)+CC1*AK(I,1)+CC2*AK(I,2)+CC3*AK(I,3)
  150 CONTINUE
      X=XSAV+H
      IF (X.EQ.XSAV) THEN
         WRITE(HSMG,'(36HEVOKAP: STEPSIZE NOT SIGNIFICANT (H=,1P,E11.4,
     1   6H HTRY=,E11.4,2H).)') H,HTRY
         CALL XABORT(HSMG)
      ENDIF
      ERRMAX=0.
      DO 160 I=1,N
      ERRMAX=MAX(ERRMAX,ABS((Y(I)-TEMP(I))/YSCAL(I)))
  160 CONTINUE
      ERRMAX=ERRMAX/EPS
      IF (ERRMAX.EQ.0.) THEN
         HDID=H
         HNEXT=GROW*H
         GO TO 210
      ELSE IF (ERRMAX.LE.1.) THEN
         HDID=H
         HNEXT=MIN(GROW,SAFETY*(ERRMAX**PGROW))*H
         GO TO 210
      ELSE
         H=MAX(SHRNK,SAFETY*(ERRMAX**PSHRNK))*H
      ENDIF
  200 CONTINUE
      CALL XABORT('EVOKAP: EXCEEDED MAXTRY.')
*----
*  SCRATCH STORAGE DEALLOCATION
*----
  210 DEALLOCATE(ASS,AK,DFDX,DYSAV,YSAV,TEMP,DYDX)
      RETURN
      END