1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
*DECK EDIWP1
SUBROUTINE EDIWP1(IPFLUX,NW,NGROUP,NUN,NREGIO,NDIM,IADJ,NLIN,
> NFUNL,NGCOND,NMERGE,KEYANI,VOLUME,IGCOND,IMERGE,FLUXES,AFLUXE)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Evaluate the PN weighting spectra for an homogenization based on
* spherical harmonic moments of the flux.
*
*Copyright:
* Copyright (C) 2019 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPFLUX pointer to the flux LCM object.
* NW order of the spherical harmonic expansion for the flux.
* NGROUP number of energy groups.
* NUN number of unknowns in flux array.
* NREGIO number of regions.
* NDIM number of dimensions.
* IADJ type of flux weighting:
* =0: direct flux weighting;
* =1: direct-adjoint flux weighting.
* NLIN number of polynomial components in flux.
* NFUNL number of spherical harmonic components in flux.
* NGCOND number of merged energy groups.
* NMERGE number of merged regions.
* KEYANI position of spherical harmonic components in unknown vector.
* VOLUME volumes.
* IGCOND limit condensed groups.
* IMERGE region merging matrix.
*
*Parameters: input/output
* FLUXES weighting function for PN fluxes.
* AFLUXE weighting function for PN adjoint fluxes.
*
*Reference:
* Jean-Francois Vidal et al., APOLLO3 homogenization techniques for
* transport core calculations - application to the ASTRID CFV core,
* Nuclear Engineering and Technology 49 (2017) 1379 - 1387.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPFLUX
INTEGER NW,NREGIO,NGROUP,NUN,NDIM,IADJ,NLIN,NFUNL,NGCOND,
> NMERGE,KEYANI(NREGIO,NLIN,NFUNL),IGCOND(NGCOND),
> IMERGE(NREGIO)
REAL VOLUME(NREGIO),FLUXES(NREGIO,NGROUP,NW),
> AFLUXE(NREGIO,NGROUP,NW)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPFLUX,JPFLUA
DOUBLE PRECISION DVOL
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: WORKF,WORKA
REAL, ALLOCATABLE, DIMENSION(:,:) :: FDEN,ADEN
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: FLUANI,AFLANI
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: SVOL
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: DFLUA,DAFLA
*----
* INITIALIZATION
*----
IF(NFUNL.EQ.1) CALL XABORT('EDIWP1: ANIS.GE.2 EXPECTED IN TRACKI'
> //'NG.')
JPFLUX=LCMGID(IPFLUX,'FLUX')
ALLOCATE(WORKF(NUN))
IF(IADJ.EQ.1) THEN
JPFLUA=LCMGID(IPFLUX,'AFLUX')
ALLOCATE(WORKA(NUN))
ENDIF
*----
* PROCESS TRIVIAL 1D CASE
*----
IF(NDIM.EQ.1) THEN
DO IL=1,NW
DO IGR=1,NGROUP
IF(IADJ.EQ.0) THEN
CALL LCMGDL(JPFLUX,IGR,WORKF)
DO IREG=1,NREGIO
FLUXES(IREG,IGR,IL)=WORKF(KEYANI(IREG,1,IL+1))
AFLUXE(IREG,IGR,IL)=1.0
ENDDO
ELSE IF(IADJ.EQ.1) THEN
CALL LCMGDL(JPFLUX,IGR,WORKF)
CALL LCMGDL(JPFLUA,IGR,WORKA)
DO IREG=1,NREGIO
FLUXES(IREG,IGR,IL)=WORKF(KEYANI(IREG,1,IL+1))
AFLUXE(IREG,IGR,IL)=WORKA(KEYANI(IREG,1,IL+1))
ENDDO
ENDIF
DO IREG=1,NREGIO
FLUXES(IREG,IGR,IL)=MAX(ABS(FLUXES(IREG,IGR,IL)),1.0E-10)
AFLUXE(IREG,IGR,IL)=MAX(ABS(AFLUXE(IREG,IGR,IL)),1.0E-10)
ENDDO
ENDDO
ENDDO
DEALLOCATE(WORKF)
IF(IADJ.EQ.1) DEALLOCATE(WORKA)
RETURN
ENDIF
*----
* RECOVER PN MOMENTS OF THE FLUX
*----
IOF=1
DO IL=1,NW
IOF0=IOF
NTRM=1
IF(NDIM.EQ.2) THEN
NTRM=IL+1
ELSE IF(NDIM.EQ.3) THEN
NTRM=2*IL+1
ENDIF
ALLOCATE(FLUANI(NREGIO,NGROUP,NTRM),AFLANI(NREGIO,NGROUP,NTRM))
DO IGR=1,NGROUP
IF(IADJ.EQ.0) THEN
CALL LCMGDL(JPFLUX,IGR,WORKF)
DO IREG=1,NREGIO
IOF=IOF0
ID=0
DO IM=-IL,IL
IF((NDIM.EQ.2).AND.(MOD(IL+IM,2).EQ.1)) CYCLE
IOF=IOF+1
IF(IOF.GT.NFUNL) CALL XABORT('EDIWP1: KEYANI OVERFLOW.')
ID=ID+1
FLUANI(IREG,IGR,ID)=WORKF(KEYANI(IREG,1,IOF))
AFLANI(IREG,IGR,ID)=1.0
ENDDO
ENDDO
ELSE IF(IADJ.EQ.1) THEN
CALL LCMGDL(JPFLUX,IGR,WORKF)
CALL LCMGDL(JPFLUA,IGR,WORKA)
DO IREG=1,NREGIO
IOF=IOF0
ID=0
DO IM=-IL,IL
IF((NDIM.EQ.2).AND.(MOD(IL+IM,2).EQ.1)) CYCLE
IOF=IOF+1
IF(IOF.GT.NFUNL) CALL XABORT('EDIWP1: KEYANI OVERFLOW.')
ID=ID+1
FLUANI(IREG,IGR,ID)=WORKF(KEYANI(IREG,1,IOF))
AFLANI(IREG,IGR,ID)=WORKA(KEYANI(IREG,1,IOF))
ENDDO
ENDDO
ENDIF
ENDDO
*----
* CONDENSATION AND HOMOGENIZATION OF SPHERICAL HARMONIC MOMENTS
*----
ALLOCATE(DFLUA(NMERGE,NGCOND,NTRM),DAFLA(NMERGE,NGCOND,NTRM),
> SVOL(NMERGE))
DFLUA(:NMERGE,:NGCOND,:NTRM)=0.0D0
DAFLA(:NMERGE,:NGCOND,:NTRM)=0.0D0
IGRFIN=0
DO IGRC=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
DO IGR=IGRDEB,IGRFIN
SVOL(:NMERGE)=0.0D0
DO IREG=1,NREGIO
IRA=IMERGE(IREG)
IF(IRA.EQ.0) CYCLE
DVOL=VOLUME(IREG)
SVOL(IRA)=SVOL(IRA)+DVOL
DO ID=1,NTRM
DFLUA(IRA,IGRC,ID)=DFLUA(IRA,IGRC,ID)+
> FLUANI(IREG,IGR,ID)*DVOL
DAFLA(IRA,IGRC,ID)=DAFLA(IRA,IGRC,ID)+
> FLUANI(IREG,IGR,ID)*AFLANI(IREG,IGR,ID)*DVOL
ENDDO
ENDDO
DO IRA=1,NMERGE
DO ID=1,NTRM
DFLUA(IRA,IGRC,ID)=DFLUA(IRA,IGRC,ID)/SVOL(IRA)
DAFLA(IRA,IGRC,ID)=DAFLA(IRA,IGRC,ID)/
> (DFLUA(IRA,IGRC,ID)*SVOL(IRA))
ENDDO
ENDDO
ENDDO
ENDDO
*----
* USE APOLLO3 FORMULA
*----
ALLOCATE(FDEN(NREGIO,NGROUP),ADEN(NREGIO,NGROUP))
FLUXES(:NREGIO,:NGROUP,IL)=0.0D0
AFLUXE(:NREGIO,:NGROUP,IL)=0.0D0
FDEN(:NREGIO,:NGROUP)=0.0D0
ADEN(:NREGIO,:NGROUP)=0.0D0
IGRFIN=0
DO IGRC=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
DO IGR=IGRDEB,IGRFIN
DO IREG=1,NREGIO
IRA=IMERGE(IREG)
IF(IRA.EQ.0) CYCLE
DO ID=1,NTRM
FLUXES(IREG,IGR,IL)=FLUXES(IREG,IGR,IL)+
> REAL(FLUANI(IREG,IGR,ID)*DFLUA(IRA,IGRC,ID))
AFLUXE(IREG,IGR,IL)=AFLUXE(IREG,IGR,IL)+
> REAL(AFLANI(IREG,IGR,ID)*DAFLA(IRA,IGRC,ID))
FDEN(IREG,IGR)=FDEN(IREG,IGR)+REAL(DFLUA(IRA,IGRC,ID))
ADEN(IREG,IGR)=ADEN(IREG,IGR)+REAL(DAFLA(IRA,IGRC,ID))
ENDDO
ENDDO
ENDDO
ENDDO
DO IGR=1,NGROUP
DO IREG=1,NREGIO
FLUXES(IREG,IGR,IL)=FLUXES(IREG,IGR,IL)/FDEN(IREG,IGR)
AFLUXE(IREG,IGR,IL)=AFLUXE(IREG,IGR,IL)/ADEN(IREG,IGR)
FLUXES(IREG,IGR,IL)=MAX(ABS(FLUXES(IREG,IGR,IL)),1.0E-10)
AFLUXE(IREG,IGR,IL)=MAX(ABS(AFLUXE(IREG,IGR,IL)),1.0E-10)
ENDDO
ENDDO
DEALLOCATE(ADEN,FDEN,SVOL,DAFLA,DFLUA,AFLANI,FLUANI)
ENDDO
DEALLOCATE(WORKF)
IF(IADJ.EQ.1) DEALLOCATE(WORKA)
RETURN
END
|