1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
|
*DECK EDIPXS
SUBROUTINE EDIPXS(IPEDIT,IADJ,IPRINT,NL,NDEL,NALBP,ITRANC,NSAVES,
> NGCOND,NMERGE,ILEAKS,NW,NTAUXT,EIGENK,B2,IGOVE,
> CUREIN,NIFISS,CURNAM,NEDMAC,VOLMER,WLETYC,
> WENERG,SCATTD,RATECM,FLUXCM,FADJCM,SIGS,SCATTS,
> DISFCT,ALBP,TAUXE,HVECT,OVERV,HFACT,HSPH,NENER,
> TIMEF,LH,LSPH)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Save homogenized/condensed macroscopic cross sections.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): G. Marleau
*
*Parameters: input
* IPEDIT pointer to the edition LCM object.
* IADJ type of flux weighting:
* = 0 direct flux weighting;
* = 1 direct-adjoint flux weighting.
* IPRINT print level;
* = 0 no print;
* = 1 print fluxes;
* = 2 1+print reaction rates;
* = 3 2+print homogenized cross sections.
* NL number of Legendre orders.
* NDEL number of delayed precursor groups.
* NALBP number of physical albedos.
* ITRANC type of transport correction.
* NSAVES homogenized cross section compute/save flag:
* = 0 no compute, no save;
* = 1 compute, no save;
* = 2 compute and save.
* NGCOND number of groups condensed.
* NMERGE number of regions merged.
* ILEAKS type of leakage calculation:
* = 0 no leakage;
* = 1 homogeneous leakage (Diffon);
* = 2 isotropic streaming (Ecco);
* = 3 anisotropic streaming (Tibere);
* = 4 inconsistent model (1/3*strd);
* = 10 isotropic diffusion coefficients recovered from input
* macrolib;
* = 11 anisotropic diffusion coefficients recovered from input
* macrolib.
* NW type of weighting for PN cross section info (=0 P0; =1 P1).
* NTAUXT number of reaction rate edits (=15+2*NDEL).
* EIGENK eigenvalue for problem.
* B2 square buckling:
* for ILEAKS=1,2,4: B2(4) is homogeneous;
* for ILEAKS=3: B2(1),B2(2),B2(3) are directional heterogeneous
* and B2(4) is homogeneous.
* IGOVE Golfier-Vergain flag (=0/1: don't/use Golfier-Vergain equ'n).
* CUREIN infinite multiplication factor.
* NIFISS number of fissile isotopes.
* CURNAM name of LCM directory where the merged/condensed cross
* sections are stored.
* NEDMAC number of extra edit vectors.
* VOLMER volume of region merged.
* WLETYC lethargy width condensed.
* WENERG energy group limits.
* SCATTD double precision scattering rates.
* NENER number of energy groups limits.
* TIMEF time stamp in day/burnup/irradiation.
* LH flag set to true if H-factors are set.
* LSPH flag set to true if SPH factors are set.
*
*Parameters: output
* RATECM averaged region/group cross sections:
* = RATECM(*,1) = total P0;
* = RATECM(*,2) = total P1;
* = RATECM(*,NW+2) = absorption;
* = RATECM(*,NW+3) = fission;
* = RATECM(*,NW+4) = fixed sources / productions;
* = RATECM(*,NW+5) = leakage;
* = RATECM(*,NW+6) = total out of group scattering;
* = RATECM(*,NW+7) = diagonal scattering x-s;
* = RATECM(*,NW+8) = chi;
* = RATECM(*,NW+9) = wims type transport correction;
* = RATECM(*,NW+10) = x-directed leakage;
* = RATECM(*,NW+11) = y-directed leakage;
* = RATECM(*,NW+12) = z-directed leakage;
* = RATECM(*,NW+13) = nu-sigf for delayed neutrons;
* = RATECM(*,NW+13+NDEL) = fission spectra for delayed neutrons.
* FLUXCM integrated region/group fluxes:
* = FLUXCM(*,1) = fluxes P0;
* = FLUXCM(*,2) = fluxes P1.
* FADJCM averaged region/group afjoint fluxes:
* = FADJCM(*,1) = adjoint fluxes P0;
* = FADJCM(*,2) = adjoint fluxes P1.
* SIGS Legendre dependent scattering cross sections.
* SCATTS homogenized scattering cross sections.
* DISFCT disadvantage factor.
* ALBP physical albedos.
* TAUXE extra edit rates.
* HVECT extra edit names.
* OVERV 1/v merge condensed.
* HFACT H-factors condensed.
* HSPH SPH factors condensed.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPEDIT
INTEGER IADJ,IPRINT,NL,NDEL,NALBP,ITRANC,NSAVES,NGCOND,NMERGE,
> ILEAKS,NW,NTAUXT,NIFISS,NEDMAC,NENER,IGOVE
REAL EIGENK,B2(4),CUREIN,VOLMER(NMERGE),WLETYC(NGCOND),
> WENERG(NGCOND+1),RATECM(NMERGE,NGCOND,NTAUXT),
> FLUXCM(NMERGE,NGCOND,NW+1),FADJCM(NMERGE,NGCOND,NW+1),
> SIGS(NMERGE,NGCOND,NL),
> SCATTS(NMERGE,NGCOND,NGCOND,NL),DISFCT(NGCOND),
> ALBP(NALBP,NGCOND,NGCOND),TAUXE(NMERGE,NGCOND,NEDMAC),
> OVERV(NMERGE,NGCOND),HFACT(NMERGE,NGCOND),
> HSPH(NMERGE,NGCOND),TIMEF(3)
LOGICAL LH,LSPH
CHARACTER CURNAM*12,HVECT(NEDMAC)*8
DOUBLE PRECISION SCATTD(NMERGE,NGCOND,NGCOND,NL)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPEDIT,KPEDIT
CHARACTER APG*3
PARAMETER (IUNOUT=6,APG=' > ',ILCMUP=1,ILCMDN=2,NSTATE=40)
CHARACTER CEDNAM*12,HSIGN*12,CM*2
INTEGER IDATA(NSTATE),ISTATE(NSTATE)
DOUBLE PRECISION SCATWG,SCATTN,FAC1,FAC2
LOGICAL LAL1D
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) ::IJJ,NJJ,IPOS
REAL, ALLOCATABLE, DIMENSION(:) ::SCATC,ALPHA
REAL, ALLOCATABLE, DIMENSION(:,:) :: FACT,ALB1
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IJJ(NMERGE),NJJ(NMERGE),IPOS(NMERGE))
ALLOCATE(SCATC(NMERGE*NGCOND),FACT(NMERGE,NW+1),ALPHA(NGCOND))
*----
* COMPUTE MERGED/CONDENSED X-S
*----
IF(NSAVES.GE.1) THEN
IDATA(4)=0
DO 200 IGR=1,NGCOND
DO 40 IKK=1,NMERGE
DO 5 IL=1,NW+1
IF(FLUXCM(IKK,IGR,1).EQ.0.0) THEN
FACT(IKK,IL)=0.0
ELSE
FACT(IKK,IL)=1.0/FLUXCM(IKK,IGR,IL)
ENDIF
5 CONTINUE
RATECM(IKK,IGR,NW+3)=RATECM(IKK,IGR,NW+3)*FACT(IKK,1)
IF((RATECM(IKK,IGR,NW+3).NE.0.0).OR.
> (RATECM(IKK,IGR,NW+8).NE.0.0)) IDATA(4)=1
IF(IADJ.EQ.0) THEN
DO IW=1,NW+1
RATECM(IKK,IGR,IW)=RATECM(IKK,IGR,IW)*FACT(IKK,IW)
ENDDO
RATECM(IKK,IGR,NW+2)=RATECM(IKK,IGR,NW+2)*FACT(IKK,1)
RATECM(IKK,IGR,NW+4)=RATECM(IKK,IGR,NW+4)*FACT(IKK,1)
IF(NENER.GT.0) OVERV(IKK,IGR)=OVERV(IKK,IGR)*FACT(IKK,1)
IF(LH) HFACT(IKK,IGR)=HFACT(IKK,IGR)*FACT(IKK,1)
IF(LSPH) HSPH(IKK,IGR)=HSPH(IKK,IGR)*FACT(IKK,1)
IF(ITRANC.NE.0) RATECM(IKK,IGR,NW+9)=RATECM(IKK,IGR,NW+9)
> *FACT(IKK,1)
DO 10 IL=1,NL
IW=MIN(IL,NW+1,2)
SIGS(IKK,IGR,IL)=SIGS(IKK,IGR,IL)*FACT(IKK,IW)
10 CONTINUE
ELSE IF(IADJ.EQ.1) THEN
DO IL=1,NW+1
FAD1=FADJCM(IKK,IGR,IL)
RATECM(IKK,IGR,IL)=RATECM(IKK,IGR,IL)*FACT(IKK,IL)/FAD1
ENDDO
FAD1=FADJCM(IKK,IGR,1)
RATECM(IKK,IGR,NW+2)=RATECM(IKK,IGR,NW+2)*FACT(IKK,1)/FAD1
RATECM(IKK,IGR,NW+4)=RATECM(IKK,IGR,NW+4)*FACT(IKK,1)/FAD1
IF(NENER.GT.0) OVERV(IKK,IGR)=OVERV(IKK,IGR)*FACT(IKK,1)
> /FAD1
IF(LH) HFACT(IKK,IGR)=HFACT(IKK,IGR)*FACT(IKK,1)/FAD1
IF(LSPH) HSPH(IKK,IGR)=HSPH(IKK,IGR)*FACT(IKK,1)/FAD1
IF(ITRANC.NE.0) RATECM(IKK,IGR,NW+9)=RATECM(IKK,IGR,NW+9)
> *FACT(IKK,1)/FAD1
DO 20 IL=1,NL
IW=MIN(IL,NW+1,2)
SIGS(IKK,IGR,IL)=SIGS(IKK,IGR,IL)*FACT(IKK,IW)/
> FADJCM(IKK,IGR,IW)
20 CONTINUE
ENDIF
DO 30 IDEL=1,NDEL
K=NW+12+IDEL
RATECM(IKK,IGR,K)=RATECM(IKK,IGR,K)*FACT(IKK,1)
30 CONTINUE
40 CONTINUE
IF((ILEAKS.EQ.1).OR.(ILEAKS.EQ.2).OR.(ILEAKS.EQ.4)) THEN
IF(IADJ.EQ.0) THEN
DO 50 IKK=1,NMERGE
RATECM(IKK,IGR,NW+5)=RATECM(IKK,IGR,NW+5)*FACT(IKK,1)
50 CONTINUE
ELSE IF(IADJ.EQ.1) THEN
DEN2=0.0
DO 60 IKK=1,NMERGE
DEN2=DEN2+FADJCM(IKK,IGR,1)
RATECM(IKK,IGR,NW+5)=RATECM(IKK,IGR,NW+5)*FACT(IKK,1)/
> FADJCM(IKK,IGR,1)
60 CONTINUE
ENDIF
ELSE IF(ILEAKS.GT.0) THEN
DO 70 IKK=1,NMERGE
RATECM(IKK,IGR,NW+5)=RATECM(IKK,IGR,NW+5)*FACT(IKK,1)
RATECM(IKK,IGR,NW+10)=RATECM(IKK,IGR,NW+10)*FACT(IKK,1)
RATECM(IKK,IGR,NW+11)=RATECM(IKK,IGR,NW+11)*FACT(IKK,1)
RATECM(IKK,IGR,NW+12)=RATECM(IKK,IGR,NW+12)*FACT(IKK,1)
70 CONTINUE
ENDIF
DO 100 JGR=1,NGCOND
DO 90 IKK=1,NMERGE
DO 80 IL=1,NL
IW=MIN(IL,NW+1)
IF(IADJ.EQ.0) THEN
SCATTS(IKK,JGR,IGR,IL)=REAL(SCATTD(IKK,JGR,IGR,IL)
> *FACT(IKK,IW))
ELSE IF(IADJ.EQ.1) THEN
SCATTS(IKK,JGR,IGR,IL)=REAL(SCATTD(IKK,JGR,IGR,IL)
> *FACT(IKK,IW)/FADJCM(IKK,JGR,IW))
ENDIF
80 CONTINUE
90 CONTINUE
100 CONTINUE
DO 110 IKK=1,NMERGE
RATECM(IKK,IGR,NW+7)=SCATTS(IKK,IGR,IGR,1)
110 CONTINUE
DO 130 IED=1,NEDMAC
DO 120 IKK=1,NMERGE
IF(IADJ.EQ.0) THEN
TAUXE(IKK,IGR,IED)=TAUXE(IKK,IGR,IED)*FACT(IKK,1)
ELSE IF(IADJ.EQ.1) THEN
TAUXE(IKK,IGR,IED)=TAUXE(IKK,IGR,IED)*FACT(IKK,1)/
> FADJCM(IKK,IGR,1)
ENDIF
120 CONTINUE
130 CONTINUE
200 CONTINUE
IF(NSAVES.EQ.2) THEN
*----
* COMPUTE THE GOLFIER-VERGAIN FACTORS
*----
IF(IGOVE.EQ.1) THEN
DO 205 IGR=1,NGCOND
FAC1=0.0D0
FAC2=0.0D0
DO 204 IKK=1,NMERGE
FAC1=FAC1+RATECM(IKK,IGR,NW+5)*FLUXCM(IKK,IGR,1)
FAC2=FAC2+FLUXCM(IKK,IGR,1)/(3.0*(RATECM(IKK,IGR,1)-
> SIGS(IKK,IGR,2)))
204 CONTINUE
ALPHA(IGR)=REAL(FAC1/FAC2)
205 CONTINUE
IF(IPRINT.GE.3) WRITE(IUNOUT,6000) ALPHA(:)
ENDIF
*----
* SAVE MERGED/CONDENSED X-S ON LCM
*----
CALL LCMSIX(IPEDIT,CURNAM,ILCMUP)
CALL LCMSIX(IPEDIT,'MACROLIB',ILCMUP)
CALL LCMPUT(IPEDIT,'TIMESTAMP',3,2,TIMEF)
IDATA(1)=NGCOND
IDATA(2)=NMERGE
IDATA(3)=NL
IDATA(5)=NEDMAC
IDATA(6)=ITRANC
IDATA(7)=NDEL
IDATA(15)=IADJ
IF(NEDMAC.GT.0) THEN
CALL LCMPTC(IPEDIT,'ADDXSNAME-P0',8,NEDMAC,HVECT)
ENDIF
JPEDIT=LCMLID(IPEDIT,'GROUP',NGCOND)
DO 210 IGR=1,NGCOND
KPEDIT=LCMDIL(JPEDIT,IGR)
IF(NEDMAC.GT.0) THEN
DO 211 IED=1,NEDMAC
CEDNAM=HVECT(IED)
IF((CEDNAM(:2).EQ.'NW').OR.
> (CEDNAM.EQ.'H-FACTOR')) GO TO 211
CALL LCMPUT(KPEDIT,CEDNAM,NMERGE,2,TAUXE(1,IGR,IED))
211 CONTINUE
ENDIF
IF(NENER.GT.0) CALL LCMPUT(KPEDIT,'OVERV',NMERGE,2,
> OVERV(1,IGR))
IF(LH) CALL LCMPUT(KPEDIT,'H-FACTOR',NMERGE,2,HFACT(1,IGR))
IF(LSPH) CALL LCMPUT(KPEDIT,'NSPH',NMERGE,2,HSPH(1,IGR))
DO IW=1,MIN(NW+1,10)
WRITE(CEDNAM,'(4HNTOT,I1)') IW-1
CALL LCMPUT(KPEDIT,CEDNAM,NMERGE,2,RATECM(1,IGR,IW))
ENDDO
CALL LCMPUT(KPEDIT,'ABS',NMERGE,2,RATECM(1,IGR,NW+2))
CALL LCMPUT(KPEDIT,'PRODUCTION',NMERGE,2,RATECM(1,IGR,NW+4))
DO 212 IKK=1,NMERGE
RATECM(IKK,IGR,NW+6)=RATECM(IKK,IGR,1)-RATECM(IKK,IGR,NW+2)
212 CONTINUE
IF(IDATA(4).EQ.1) THEN
CALL LCMPUT(KPEDIT,'NUSIGF',NMERGE,2,RATECM(1,IGR,NW+3))
CALL LCMPUT(KPEDIT,'CHI',NMERGE,2,RATECM(1,IGR,NW+8))
DO 901 IDEL=1,NDEL
K=NW+12+IDEL
WRITE(CEDNAM,'(6HNUSIGF,I2.2)') IDEL
CALL LCMPUT(KPEDIT,CEDNAM,NMERGE,2,RATECM(1,IGR,K))
WRITE(CEDNAM,'(3HCHI,I2.2)') IDEL
CALL LCMPUT(KPEDIT,CEDNAM,NMERGE,2,RATECM(1,IGR,NDEL+K))
901 CONTINUE
ENDIF
IF(ITRANC.NE.0) THEN
CALL LCMPUT(KPEDIT,'TRANC',NMERGE,2,RATECM(1,IGR,NW+9))
ENDIF
IF(IGOVE.EQ.1) THEN
! use the Golfier-Vergain formula
SCATC(:NMERGE)=ALPHA(IGR)/(3.0*(RATECM(:NMERGE,IGR,1)
> -SIGS(:NMERGE,IGR,2)))
CALL LCMPUT(KPEDIT,'DIFF',NMERGE,2,SCATC)
ELSE IF((ILEAKS.EQ.1).OR.(ILEAKS.EQ.2).OR.(ILEAKS.EQ.10))
> THEN
CALL LCMPUT(KPEDIT,'DIFF',NMERGE,2,RATECM(1,IGR,NW+5))
ELSE IF(ILEAKS.EQ.3) THEN
CALL LCMPUT(KPEDIT,'DIFF',NMERGE,2,RATECM(1,IGR,NW+5))
CALL LCMPUT(KPEDIT,'DIFFX',NMERGE,2,RATECM(1,IGR,NW+10))
CALL LCMPUT(KPEDIT,'DIFFY',NMERGE,2,RATECM(1,IGR,NW+11))
CALL LCMPUT(KPEDIT,'DIFFZ',NMERGE,2,RATECM(1,IGR,NW+12))
ELSE IF(ILEAKS.EQ.11) THEN
CALL LCMPUT(KPEDIT,'DIFFX',NMERGE,2,RATECM(1,IGR,NW+10))
CALL LCMPUT(KPEDIT,'DIFFY',NMERGE,2,RATECM(1,IGR,NW+11))
CALL LCMPUT(KPEDIT,'DIFFZ',NMERGE,2,RATECM(1,IGR,NW+12))
ENDIF
CALL LCMPUT(KPEDIT,'FLUX-INTG',NMERGE,2,FLUXCM(1,IGR,1))
DO IL=2,MIN(NW+1,10)
WRITE(CEDNAM,'(11HFLUX-INTG-P,I1)') IL-1
CALL LCMPUT(KPEDIT,CEDNAM,NMERGE,2,FLUXCM(1,IGR,IL))
ENDDO
IF(IADJ.EQ.1) THEN
DO IL=1,MIN(NW+1,10)
WRITE(CEDNAM,'(4HNWAT,I1)') IL-1
CALL LCMPUT(KPEDIT,CEDNAM,NMERGE,2,FADJCM(1,IGR,IL))
ENDDO
ENDIF
DO 350 IL=1,NL
WRITE (CM,'(I2.2)') IL-1
IPOSIT=0
DO 214 IKK=1,NMERGE
J2=IGR
J1=IGR
DO 215 JGR=1,NGCOND
IF(SCATTS(IKK,IGR,JGR,IL).NE.0.0) THEN
J2=MAX(J2,JGR)
J1=MIN(J1,JGR)
ENDIF
215 CONTINUE
NJJ(IKK)=J2-J1+1
IJJ(IKK)=J2
IPOS(IKK)=IPOSIT+1
DO 216 JGR=J2,J1,-1
IPOSIT=IPOSIT+1
SCATC(IPOSIT)=SCATTS(IKK,IGR,JGR,IL)
216 CONTINUE
214 CONTINUE
CALL LCMPUT(KPEDIT,'SIGS'//CM,NMERGE,2,SIGS(1,IGR,IL))
CALL LCMPUT(KPEDIT,'SIGW'//CM,NMERGE,2,SCATTS(1,IGR,IGR,IL))
CALL LCMPUT(KPEDIT,'SCAT'//CM,IPOSIT,2,SCATC)
CALL LCMPUT(KPEDIT,'NJJS'//CM,NMERGE,1,NJJ)
CALL LCMPUT(KPEDIT,'IJJS'//CM,NMERGE,1,IJJ)
CALL LCMPUT(KPEDIT,'IPOS'//CM,NMERGE,1,IPOS)
350 CONTINUE
IF(IPRINT.GE.4) THEN
WRITE(IUNOUT,'(/14H G R O U P :,I4)') IGR
CALL LCMLIB(KPEDIT)
ENDIF
210 CONTINUE
IF((ILEAKS.EQ.1).OR.(ILEAKS.EQ.2).OR.(ILEAKS.EQ.10)) THEN
CALL LCMPUT(IPEDIT,'B2 B1HOM',1,2,B2(4))
ELSE IF((ILEAKS.EQ.3).OR.(ILEAKS.EQ.11)) THEN
CALL LCMPUT(IPEDIT,'B2 B1HOM',1,2,B2(4))
CALL LCMPUT(IPEDIT,'B2 HETE',3,2,B2)
ENDIF
IDATA(8)=NALBP
DO 217 I=9,NSTATE
IDATA(I)=0
217 CONTINUE
IF((ILEAKS.EQ.1).OR.(ILEAKS.EQ.2).OR.(ILEAKS.EQ.4).OR.
> (ILEAKS.EQ.10)) THEN
IDATA(9)=1
ELSE IF((ILEAKS.EQ.3).OR.(ILEAKS.EQ.11)) THEN
IDATA(9)=2
ENDIF
IDATA(10)=NW
IF(LSPH) THEN
IDATA(14)=1
CALL LCMSIX(IPEDIT,'SPH',1)
ISTATE(:)=0
ISTATE(1)=4
ISTATE(2)=1
ISTATE(6)=1
ISTATE(7)=1
ISTATE(8)=NGCOND
CALL LCMPUT(IPEDIT,'STATE-VECTOR',NSTATE,1,ISTATE)
CALL LCMSIX(IPEDIT,' ',2)
ENDIF
CALL LCMPUT(IPEDIT,'STATE-VECTOR',NSTATE,1,IDATA)
HSIGN='L_MACROLIB'
CALL LCMPTC(IPEDIT,'SIGNATURE',12,HSIGN)
IF(NENER.GT.0) THEN
CALL LCMPUT(IPEDIT,'ENERGY',NGCOND+1,2,WENERG)
CALL LCMPUT(IPEDIT,'DELTAU',NGCOND,2,WLETYC)
ENDIF
CALL LCMPUT(IPEDIT,'VOLUME',NMERGE,2,VOLMER)
IF((EIGENK.NE.0.0).AND.(NIFISS.GT.0)) THEN
CALL LCMPUT(IPEDIT,'K-EFFECTIVE',1,2,EIGENK)
ENDIF
IF((CUREIN.NE.0.0).AND.(NIFISS.GT.0)) THEN
CALL LCMPUT(IPEDIT,'K-INFINITY',1,2,CUREIN)
ENDIF
CALL LCMPUT(IPEDIT,'FLUXDISAFACT',NGCOND,2,DISFCT)
IF(NALBP.GT.0) THEN
LAL1D=.TRUE.
DO IAL=1,NALBP
DO IGR=1,NGCOND
DO JGR=1,NGCOND
IF((IGR.NE.JGR).AND.(ALBP(IAL,IGR,JGR).NE.0.0)) THEN
LAL1D=.FALSE.
GO TO 218
ENDIF
ENDDO
ENDDO
ENDDO
218 IF(LAL1D) THEN
* diagonal physical albedos
ALLOCATE(ALB1(NALBP,NGCOND))
DO IAL=1,NALBP
DO IGR=1,NGCOND
ALB1(IAL,IGR)=ALBP(IAL,IGR,IGR)
ENDDO
ENDDO
CALL LCMPUT(IPEDIT,'ALBEDO',NALBP*NGCOND,2,ALB1)
DEALLOCATE(ALB1)
ELSE
* matrix physical albedos
CALL LCMPUT(IPEDIT,'ALBEDO',NALBP*NGCOND*NGCOND,2,ALBP)
ENDIF
ENDIF
CALL LCMSIX(IPEDIT,' ',ILCMDN)
CALL LCMSIX(IPEDIT,' ',ILCMDN)
IF(IPRINT.GT.0) WRITE(IUNOUT,6031) CURNAM
ENDIF
ENDIF
*----
* PRINT X-S
*----
IF(IPRINT.GE.3) THEN
IF(IGOVE.EQ.1) THEN
WRITE(IUNOUT,'(/41H EDIPXS: USE THE GOLFIER-VERGAIN APPROXIM,
> 43HATION FOR DIFFUSION COEFFICIENT CALCULATION)')
ENDIF
WRITE(IUNOUT,6010)
DO 170 IGR=1,NGCOND
IF((ILEAKS.EQ.1).OR.(ILEAKS.EQ.2).OR.(ILEAKS.EQ.4).OR.
> (ILEAKS.EQ.10)) THEN
WRITE(IUNOUT,6020) IGR
ELSE
WRITE(IUNOUT,6021) IGR
ENDIF
DO 171 IKK=1,NMERGE
*----
* UNCOMMENT THE 4 LINES TO PERFORM TRANSPORT CORRECTION
*----
TOTAL=RATECM(IKK,IGR,1)
SCATWG=SCATTS(IKK,IGR,IGR,1)
* IF(ITRANC.NE.0) THEN
* TOTAL=TOTAL-RATECM(IKK,IGR,NW+9)
* SCATWG=SCATWG-RATECM(IKK,IGR,NW+9)
* ENDIF
*
IF (FLUXCM(IKK,IGR,1).NE.0.0) THEN
FLXAVG=FLUXCM(IKK,IGR,1)/VOLMER(IKK)
SCATTN=0.0D0
DO 172 JGR=1,NGCOND
IF(JGR.NE.IGR) SCATTN=SCATTN+SCATTS(IKK,JGR,IGR,1)
172 CONTINUE
IF((ILEAKS.EQ.1).OR.(ILEAKS.EQ.2).OR.(ILEAKS.EQ.4).OR.
> (ILEAKS.EQ.10)) THEN
WRITE(IUNOUT,6022) IKK,FLXAVG,TOTAL,
> RATECM(IKK,IGR,NW+5),RATECM(IKK,IGR,NW+2),
> RATECM(IKK,IGR,NW+3),RATECM(IKK,IGR,NW+8),SCATWG,SCATTN
ELSE
WRITE(IUNOUT,6022) IKK,FLXAVG,TOTAL,
> RATECM(IKK,IGR,NW+2),RATECM(IKK,IGR,NW+3),
> RATECM(IKK,IGR,NW+8),SCATWG,SCATTN
ENDIF
ENDIF
171 CONTINUE
IF((ILEAKS.EQ.3).OR.(ILEAKS.EQ.11)) THEN
WRITE(IUNOUT,6024)
DO 173 IKK=1,NMERGE
WRITE(IUNOUT,6025) IKK,RATECM(IKK,IGR,NW+10),
> RATECM(IKK,IGR,NW+11),RATECM(IKK,IGR,NW+12),
> RATECM(IKK,IGR,NW+5)
173 CONTINUE
ENDIF
WRITE(IUNOUT,6026) DISFCT(IGR)
170 CONTINUE
ENDIF
IF(IPRINT.GE.4) THEN
DO 190 IKK=1,NMERGE
WRITE(IUNOUT,6027) IKK,(JGR,JGR=1,NGCOND)
DO 180 IGR=1,NGCOND
*----
* UNCOMMENT THE FOLLOWING LINE TO PERFORM TRANSPORT CORRECTION
*----
SCATWG=SCATTS(IKK,IGR,IGR,1)
* IF(ITRANC.NE.0) SCATWG=SCATWG-RATECM(IKK,IGR,NW+9)
*
WRITE(IUNOUT,6028) IGR,(SCATTS(IKK,JGR,IGR,1),JGR=1,IGR-1),
> SCATWG,(SCATTS(IKK,JGR,IGR,1),JGR=IGR+1,NGCOND)
180 CONTINUE
WRITE (IUNOUT,'(//)')
190 CONTINUE
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(ALPHA,FACT,SCATC)
DEALLOCATE(IPOS,NJJ,IJJ)
RETURN
*----
* FORMAT
*----
6000 FORMAT(/33H EDIPXS: Golfier-Vergain factors=,1P,10E12.4/(33X,
> 10E12.4))
6010 FORMAT(/' F L U X E S A N D H O M O G E N I Z E D X - S'/
> 1X,51(1H-))
6020 FORMAT(/' G R O U P :',I4/
>1X,'REGION',3X,'AVERAGE',9X,'NTOT0',7X,'DIFFUSION',5X,
>'ABSORPTION',5X,'NUSIGF',8X,'FISSION',10X,'SCATTERING X-S'/11X,
>'FLUX',12X,'X-S',7X,'COEFFICIENT',7X,'X-S',10X,'X-S',10X,
>'SPECTRUM',2X,'WITHIN GROUP',2X,'OUT OF GROUP')
6021 FORMAT(/' G R O U P :',I4/
>1X,'REGION',3X,'AVERAGE',9X,'NTOT0',7X,
>'ABSORPTION',5X,'NUSIGF',8X,'FISSION',10X,'SCATTERING X-S'/11X,
>'FLUX',12X,'X-S',11X,'X-S',10X,'X-S',10X,'SPECTRUM',2X,
>'WITHIN GROUP',2X,'OUT OF GROUP')
6022 FORMAT(1X,I4,1P,8E14.5)
6024 FORMAT(/' REGION X-LEAKAGE Y-LEAKAGE Z-LEAKAGE',
>' HOM-LEAKAGE'/' COEFFICIENT COEFFICIENT ',
>'COEFFICIENT COEFFICIENT')
6025 FORMAT(1X,I6,1X,1P,5E14.5)
6026 FORMAT(/' FLUX DISADVANTAGE FACTOR =',1P,E14.5)
6027 FORMAT(/47H SCATTERING TRANSFER X-S (I TOWARD J) IN REGION,I5,1H:
> //(11X,2HJ=,I4,:,6X,2HJ=,I4,:,6X,2HJ=,I4,:,6X,2HJ=,I4,:,6X,2HJ=,
> I4,:,6X,2HJ=,I4,:,6X,2HJ=,I4,:,6X,2HJ=,I4,:,6X,2HJ=,I4,:,6X,
> 2HJ=,I4))
6028 FORMAT(3H I=,I4,2H: ,1P,10E12.4/(9X,10E12.4))
6031 FORMAT(/53H MERGED/CONDENSED SET OF X-S SAVED IN LCM DIRECTORY ',
> A12,2H'./)
END
|