summaryrefslogtreecommitdiff
path: root/Dragon/src/EDIMIC.f
blob: 025d1c448e220911d74a0afe7f80784bb8022786 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
*DECK EDIMIC
      SUBROUTINE EDIMIC(IPEDIT,IPFLUX,IPLIB,IADJ,NL,NDEL,NBESP,NBISO,
     1 NDEPL,ISONAM,ISONRF,IPISO,MIX,TN,NED,HVECT,NOUT,HVOUT,IPRINT,
     2 NGROUP,NGCOND,NBMIX,NREGIO,NMERGE,NDFI,NDFP,ILEAKS,ILUPS,NW,
     3 MATCOD,VOLUME,KEYFLX,CURNAM,IGCOND,IMERGE,FLUXES,AFLUXE,EIGENK,
     4 EIGINF,B2,DEN,ITYPE,IEVOL,LSISO,EMEVF,EMEVG,DECAY,YIELD,FIPI,
     5 FIFP,PYIELD,ITRANC,LISO,NMLEAK)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Homogenization and condensation of microscopic cross sections.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPEDIT  pointer to the edition LCM object (L_EDIT signature).
* IPFLUX  pointer to the solution LCM object (L_FLUX signature).
* IPLIB   pointer to the reference microscopic cross section library
*         LCM object (L_LIBRARY signature).
* IADJ    type of flux weighting:
*         =0: direct flux weighting;
*         =1: direct-adjoint flux weighting.
* NL      number of Legendre orders required in the calculation
*         (NL=1 or higher).
* NDEL    number of delayed precursor groups.
* NBESP   number of energy-dependent fission spectra.
* NBISO   number of isotopes.
* NDEPL   number of depleting isotopes.
* ISONAM  local names of NBISO isotopes:
*         chars 1 to 8  is the local isotope name;
*         chars 9 to 12 is a suffix function of the mix number.
* ISONRF  library name of isotopes.
* IPISO   pointer array towards microlib isotopes.
* MIX     mixture number associated with each isotope.
* TN      absolute temperature associated with each isotope.
* NED     number of extra vector edits from MATXS.
* HVECT   MATXS names of the extra vector edits.
* NOUT    number of output cross section types (set to zero to recover
*         all cross section types).
* HVOUT   MATXS names of the output cross section types.
* IPRINT  print index.
* NGROUP  number of energy groups.
* NGCOND  number of condensed groups.
* NBMIX   number of mixtures.
* NREGIO  number of volumes.
* NMERGE  number of merged regions.
* NDFI    number of fissile isotopes.
* NDFP    number of fission products.
* ILEAKS  leakage calculation type: =0: no leakage; =1: homogeneous
*         leakage (Diffon); =2: isotropic streaming (Ecco);
*         =3: anisotropic streaming (Tibere).
* ILUPS   up-scattering removing flag (=1 to remove up-scattering from
*         output cross-sections).
* NW      type of weighting for P1 cross section info (=0: P0 ; =1: P1).
* MATCOD  mixture index per volume.
* VOLUME  volumes.
* KEYFLX  position of average fluxes.
* CURNAM  name of the LCM directory where the microscopic cross sections
*         are stored (a blank value means no save).
* IGCOND  limits of condensed groups.
* IMERGE  index of merged regions.
* FLUXES  fluxes.
* AFLUXE  adjoint fluxes.
* EIGENK  effective multiplication factor.
* EIGINF  infinite multiplication factor.
* B2      bucklings.
* DEN     number density of each isotope.
* ITYPE   type of each isotope.
* IEVOL   flag making an isotope non-depleting. A value of
*         1 is used to force an isotope to be non-depleting.
* LSISO   flag for isotopes saved.
* EMEVF   fission production energy.
* EMEVG   capture production energy.
* DECAY   radioactive decay constant.
* YIELD   group-ordered condensed fission product yield.
* FIPI    fissile isotope index assigned to each microlib isotope.
* FIFP    fission product index assigned to each microlib isotope.
* PYIELD  fissile isotope ordered condensed fission product yield.
* ITRANC  type of transport correction (=0: no correction).
* LISO    =.TRUE. if we want to keep all the isotopes after 
*         homogeneization.
* NMLEAK  number of leakage zones.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPEDIT,IPFLUX,IPLIB,IPISO(NBISO)
      INTEGER   IADJ,NL,NDEL,NBESP,NBISO,NDEPL,ISONAM(3,NBISO),
     1          ISONRF(3,NBISO),MIX(NBISO),NED,NOUT,IPRINT,NGROUP,
     2          NGCOND,NBMIX,NREGIO,NMERGE,NDFI,NDFP,ILEAKS,ILUPS,NW,
     3          MATCOD(NREGIO),KEYFLX(NREGIO),IGCOND(NGCOND),
     4          IMERGE(NREGIO),ITYPE(NBISO),IEVOL(NBISO),LSISO(NBISO),
     5          FIPI(NBISO,NMERGE),FIFP(NBISO,NMERGE),ITRANC,NMLEAK
      REAL      TN(NBISO),VOLUME(NREGIO),FLUXES(NREGIO,NGROUP,NW+1),
     1          AFLUXE(NREGIO,NGROUP,NW+1),EIGENK,EIGINF,B2(4),
     2          DEN(NBISO),EMEVF(NBISO),EMEVG(NBISO),DECAY(NBISO),
     3          YIELD(NGCOND+1,NDFP,NMERGE),PYIELD(NDFI,NDFP,NMERGE)
      CHARACTER HVECT(NED)*8,HVOUT(NOUT)*8,CURNAM*12
      LOGICAL   LISO
*----
*  LOCAL VARIABLES
*----
      PARAMETER (NSTATE=40,MAXESP=4)
      TYPE(C_PTR) JPLIB,KPLIB,JPFLUX,JPEDIT,KPEDIT
      LOGICAL    LOGIC,LSTRD,LAWR,LMEVF,LMEVG,LDECA,LWD,LONE
      CHARACTER  CM*2,HNEW*12,TEXT8*8,TEXT12*12,HSMG*131,HNAMIS*12
      INTEGER    IPAR(NSTATE),IESP2(MAXESP+1)
      REAL       B2T(3),EESP(MAXESP+1),EESP2(MAXESP+1)
      DOUBLE PRECISION TMP,PARM0,PARM3,PARM4,VOLMER,DDEN,DDENZ,SQFMAS,
     1           XDRCST,NMASS,EVJ,CONV,ZNU,ZDEN,ZFL1,ZFL2,DENVOL
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: ISMIX,ISTYP,ISTOD,ITYPRO,
     1 JPIFI,MILVO,ITYPS,IMERGL
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: IHNISO
      INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: IGAR
      LOGICAL, ALLOCATABLE, DIMENSION(:) :: MASK
      REAL, ALLOCATABLE, DIMENSION(:) :: XSECT,WSTRD,SDEN,VOLISO,TNISO,
     1 TMPXS,WDLA,WORK,WORKF,ENR,GA1,GA2,VOLM,YPIFI
      REAL, ALLOCATABLE, DIMENSION(:,:) :: GAR,WGAR,DIFHET
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: PARM12,PHIAV,AHIAV
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: GAS
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: WSCAT
      CHARACTER(LEN=8), ALLOCATABLE, DIMENSION(:) :: HMAKE
*----
*  SCRATCH STORAGE ALLOCATION
*----
*
* GAR/GAS CONTENTS:
*              1 : 'NWT0'  |  P0 direct flux
*              2 : 'NWT1'  |  P1 direct flux / NW values
*  ...                     |
*           2+NW : 'NWAT0' |  P0 adjoint flux
*           3+NW : 'NWAT1' |  P1 adjoint flux / NW values
*  ...                     |
*         3+2*NW : 'NTOT0' |  P0 total cross section
*         4+2*NW : 'NTOT1' |  P1 total cross section / NW values
*  ...                     |
*         4+3*NW : 'SIGS00' |
*         5+3*NW : 'SIGS01' | NL VALUES
*  ...                      |
*      4+NL+3*NW : 'NUSIGF'
*      5+NL+3*NW : HVECT(1) |
*      6+NL+3*NW : HVECT(2) | NED VALUES
*  ...                      |
*  5+NED+NL+3*NW : 'H-FACTOR'
*  6+NED+NL+3*NW : 'OVERV'
*  7+NED+NL+3*NW : 'TRANC'
*  8+NED+NL+3*NW : 'STRD'
*        IOF0H+1 : 'NUSIGF01' |
*        IOF0H+2 : 'NUSIGF02' | NDEL VALUES
*  ...                        |
*   IOF1H+NDEL+1 : 'CHI'
*   IOF1H+NDEL+2 : 'CHI01' |
*   IOF1H+NDEL+3 : 'CHI02' | NDEL VALUES
*  ...                     |
* IOF1H+2*NDEL+2 : 'CHI--01' |
* IOF1H+2*NDEL+3 : 'CHI--02' | NBESP VALUES
*  ...                       |
*
      MAXH=9+NBESP+2*NDEL+NED+NL+3*NW
      CALL EDIMAX(NBISO,ISONAM,MIX,IPRINT,NREGIO,NMERGE,MATCOD,IMERGE,
     1 LSISO,LISO,MAXISO)
      
      ALLOCATE(IGAR(NGROUP,3,NL),IHNISO(3,MAXISO),ISMIX(MAXISO),
     1 ISTYP(MAXISO),ISTOD(MAXISO),ITYPRO(NL),MILVO(NMERGE),
     2 ITYPS(NBISO),IMERGL(NBMIX))
      ALLOCATE(MASK(NBISO))
      ALLOCATE(GAR(NGROUP,MAXH),WGAR(NGROUP**2,NL),XSECT(0:NBMIX),
     1 DIFHET(NMLEAK,NGROUP),WSTRD(NGCOND),SDEN(MAXISO),VOLISO(MAXISO),
     2 TNISO(MAXISO),TMPXS(NGCOND),WDLA(NDEL),WORK(NGROUP))
      ALLOCATE(WSCAT(NGCOND,NGCOND,NL),GAS(NGCOND,MAXH))
      ALLOCATE(HMAKE(MAXH+NL))
      ALLOCATE(JPIFI(MAXISO),YPIFI(MAXISO))
*----
*  FOR AVERAGED NEUTRON VELOCITY
*  V=SQRT(2*ENER/M)=SQRT(2/M)*SQRT(ENER)
*  SQFMAS=SQRT(2/M) IN CM/S/SQRT(EV) FOR V IN CM/S AND E IN EV
*        =SQRT(2*1.602189E-19(J/EV)* 1.0E4(CM2/M2) /1.67495E-27 (KG))
*        =1383155.30602 CM/S/SQRT(EV)
*----
      EVJ=XDRCST('eV','J')
      NMASS=XDRCST('Neutron mass','kg')
      SQFMAS=SQRT(2.0D4*EVJ/NMASS)
*
      JPEDIT=C_NULL_PTR
      IF(CURNAM.NE.' ') THEN
        CALL LCMSIX(IPEDIT,CURNAM,1)
        IF(MAXISO.GT.0) JPEDIT=LCMLID(IPEDIT,'ISOTOPESLIST',MAXISO)
      ENDIF
*
      DO 10 ISO=1,MAXISO
      SDEN(ISO)=0.0
      VOLISO(ISO)=0.0
      JPIFI(ISO)=0
   10 CONTINUE
      IOF0H=8+NED+NL+3*NW
      IOF1H=8+NED+NL+3*NW+NDEL
      IOF2H=8+NED+NL+3*NW+2*NDEL
      JJISO=0
      JJNDFI=0
      CONV=1.0E6 ! convert MeV to eV
      DO 430 INM=1,NMERGE
*----
*  PRELIMINARY CALCULATIONS FOR STRD CROSS SECTIONS
*----
      LSTRD=ILEAKS.GE.1
      IF(LSTRD) THEN
         IF(ILEAKS.EQ.1) THEN
            CALL LCMLEN(IPFLUX,'DIFFHET',ILCMLN,ITYLCM)
            IF(ILCMLN.EQ.0) THEN
               CALL XABORT('EDIMIC: UNABLE TO RECOVER THE DIFFHET RECO'
     1         //'RD IN THE FLUX OBJECT.')
            ENDIF
            CALL LCMGET(IPFLUX,'IMERGE-LEAK',IMERGL)
            CALL LCMGET(IPFLUX,'DIFFHET',DIFHET)
         ELSE IF(ILEAKS.EQ.3) THEN
            CALL LCMGET(IPFLUX,'B2  HETE',B2T)
            B2ALL=B2T(1)+B2T(2)+B2T(3)
            IF(B2ALL.EQ.0.0) THEN
               B2T(1)=1.0/3.0
               B2T(2)=B2T(1)
               B2T(3)=B2T(1)
            ELSE
               B2T(1)=B2T(1)/B2ALL
               B2T(2)=B2T(2)/B2ALL
               B2T(3)=B2T(3)/B2ALL
            ENDIF
         ENDIF
         IGRFIN=0
         XSECT(0)=0.0
         DO 50 IGRCND=1,NGCOND
         ZNU=0.0D0
         ZDEN=0.0D0
         ZFL1=0.0D0
         ZFL2=0.0D0
         IGRDEB=IGRFIN+1
         IGRFIN=IGCOND(IGRCND)
         CALL LCMSIX(IPLIB,'MACROLIB',1)
         JPLIB=LCMGID(IPLIB,'GROUP')
         JPFLUX=LCMGID(IPFLUX,'FLUX')
         DO 40 IGR=IGRDEB,IGRFIN
         KPLIB=LCMGIL(JPLIB,IGR)
         CALL LCMGET(KPLIB,'NTOT0',XSECT(1))
         IF((ILEAKS.EQ.2).OR.(ILEAKS.EQ.3)) THEN
            CALL LCMLEL(JPFLUX,IGR,ILCMLN,ITYLCM)
            IF(ILCMLN.EQ.0) CALL XABORT('EDIMIC: MISSING FLUX INFO.')
            ALLOCATE(WORKF(ILCMLN))
            CALL LCMGDL(JPFLUX,IGR,WORKF)
         ENDIF
         FL1=0.0
         FL2=0.0
         DO 20 IREGIO=1,NREGIO
         MATNUM=MATCOD(IREGIO)
         IF(IMERGE(IREGIO).EQ.INM) THEN
            VOLREG=VOLUME(IREGIO)
            IF(IADJ.EQ.0) THEN
              FL1=FLUXES(IREGIO,IGR,1)
              IF(NW.GE.1) FL2=FLUXES(IREGIO,IGR,2)
            ELSE IF(IADJ.EQ.1) THEN
              IF(ILEAKS.NE.1) CALL XABORT('EDIMIC: DIRECT-ADJOINT WEIG'
     1        //'HTING NOT IMPLEMENTED.')
              FL1=FLUXES(IREGIO,IGR,1)*AFLUXE(IREGIO,IGR,1)
              IF(NW.GE.1) FL2=FLUXES(IREGIO,IGR,2)*
     1        AFLUXE(IREGIO,IGR,2)
            ENDIF
            IF(NW.EQ.0) THEN
               ZLEAK=0.0
               IF(ILEAKS.EQ.1) THEN
                 IME=IMERGL(MATNUM)
                 IF(IME.GT.0) ZLEAK=DIFHET(IME,IGR)*FLUXES(IREGIO,IGR,1)
               ELSE IF(ILEAKS.EQ.2) THEN
                 ZLEAK=WORKF(KEYFLX(IREGIO)+ILCMLN/2)
               ELSE IF(ILEAKS.EQ.3) THEN
                 ZLEAK=B2T(1)*WORKF(KEYFLX(IREGIO)+NREGIO)+
     1                 B2T(2)*WORKF(KEYFLX(IREGIO)+2*NREGIO)+
     2                 B2T(3)*WORKF(KEYFLX(IREGIO)+3*NREGIO)
               ENDIF
               ZNU=ZNU+ZLEAK*VOLREG
               ZDEN=ZDEN+XSECT(MATNUM)*FL1*VOLREG
               ZFL1=ZFL1+FL1*VOLREG
               ZFL2=ZFL2+FL1*VOLREG
            ELSE
               ZNU=ZNU+FL2*VOLREG
               ZDEN=ZDEN+XSECT(MATNUM)*FL2*VOLREG
               ZFL1=ZFL1+FL1*VOLREG
               ZFL2=ZFL2+FL2*VOLREG
            ENDIF
         ENDIF
   20    CONTINUE
         IF((ILEAKS.EQ.2).OR.(ILEAKS.EQ.3)) DEALLOCATE(WORKF)
         CALL LCMLEN(KPLIB,'SIGS01',LENGTH,ITYLCM)
         IF((LENGTH.EQ.NBMIX).AND.(NL.GE.2)) THEN
            CALL LCMGET(KPLIB,'SIGS01',XSECT(1))
            DO 30 IREGIO=1,NREGIO
            MATNUM=MATCOD(IREGIO)
            IF(IMERGE(IREGIO).EQ.INM) THEN
               VOLREG=VOLUME(IREGIO)
               IF(IADJ.EQ.0) THEN
                 FL1=FLUXES(IREGIO,IGR,1)
                 IF(NW.GE.1) FL2=FLUXES(IREGIO,IGR,2)
               ELSE IF(IADJ.EQ.1) THEN
                 FL1=FLUXES(IREGIO,IGR,1)*AFLUXE(IREGIO,IGR,1)
                 IF(NW.GE.1) FL2=FLUXES(IREGIO,IGR,2)*
     1           AFLUXE(IREGIO,IGR,2)
               ENDIF
               IF(NW.EQ.0) THEN
                  ZDEN=ZDEN-XSECT(MATNUM)*FL1*VOLREG
               ELSE
                  ZDEN=ZDEN-XSECT(MATNUM)*FL2*VOLREG
               ENDIF
            ENDIF
   30       CONTINUE
         ENDIF
   40    CONTINUE
         CALL LCMSIX(IPLIB,' ',2)
         WSTRD(IGRCND)=REAL((ZFL1/(3.0*ZNU))*ZFL2/ZDEN)
   50    CONTINUE
      ENDIF
*
      VOLMER=0.0D0
      DO 60 IREGIO=1,NREGIO
      IF(IMERGE(IREGIO).EQ.INM) VOLMER=VOLMER+VOLUME(IREGIO)
   60 CONTINUE
      MASK(:NBISO)=.FALSE.
      DO 420 ISO=1,NBISO
      ITYPS(ISO)=ITYPE(ISO)
      IF(MASK(ISO).OR.(LSISO(ISO).EQ.0)) GO TO 420
      DO 90 IREGIO=1,NREGIO
      IF((IMERGE(IREGIO).EQ.INM).AND.(MATCOD(IREGIO).EQ.MIX(ISO)))
     1 GO TO 100
   90 CONTINUE
      GO TO 420
  100 LOGIC=.FALSE.
      DDEN=0.0D0
      DDENZ=0.0D0
*----
*  MERGE/CONDENSE REACTIONS 'NWT0','NWT1','NWAT0','NWAT1','SIGS'//CM,
*   'SCAT'//CM, 'NTOT0', 'NUSIGF', 'CHI', 'CHIxx', 'STRD' AND HVECT
*----
      DO 110 J=1,MAXH+NL
      HMAKE(J)=' '
  110 CONTINUE
      DO 121 J=1,MAXH
      DO 120 I=1,NGCOND
      GAS(I,J)=0.0D0
  120 CONTINUE
  121 CONTINUE
      DO 132 K=1,NL
      DO 131 J=1,NGCOND
      DO 130 I=1,NGCOND
      WSCAT(I,J,K)=0.0D0
  130 CONTINUE
  131 CONTINUE
  132 CONTINUE
      DO 140 I=1,NDEL
      WDLA(I)=0.0
  140 CONTINUE
*----
*  RECOVER THE RADIOACTIVE DECAY CONSTANTS OF DELAYED NEUTRON
*  GROUPS FROM THE MACROLIB IF THEY EXIST
*----
      LWD=.FALSE.
      IF(CURNAM.NE.' ') THEN
         CALL LCMSIX(IPEDIT,'MACROLIB',1)
         CALL LCMLEN(IPEDIT,'LAMBDA-D',ILONG,ITYLCM)
         LWD=(ILONG.EQ.NDEL).AND.(NDEL.GT.0)
         IF(LWD) CALL LCMGET(IPEDIT,'LAMBDA-D',WDLA)
         CALL LCMSIX(IPEDIT,' ',2)
      ENDIF
*
      HMAKE(1)='NWT0'
      LAWR=.FALSE.
      LDECA=.FALSE.
      LMEVF=.FALSE.
      LMEVG=.FALSE.
      DO 145 IW=1,MIN(NW+1,10)
        WRITE(HMAKE(IW),'(3HNWT,I1)') IW-1
        IF(IADJ.EQ.1) WRITE(HMAKE(1+NW+IW),'(4HNWAT,I1)') IW-1
  145 CONTINUE
      ALLOCATE(PARM12(NW+1))
      DO 260 IREGIO=1,NREGIO
      MATNUM=MATCOD(IREGIO)
      VOL=VOLUME(IREGIO)
      IF(IMERGE(IREGIO).EQ.INM) THEN
         IGRFIN=0
         DO 154 IGRCND=1,NGCOND
         IGRDEB=IGRFIN+1
         IGRFIN=IGCOND(IGRCND)
         DO 151 IGR=IGRDEB,IGRFIN
         DO 150 IW=1,NW+1
           GAS(IGRCND,IW)=GAS(IGRCND,IW)+DBLE(FLUXES(IREGIO,IGR,IW)*VOL)
           IF(IADJ.EQ.1) GAS(IGRCND,1+NW+IW)=GAS(IGRCND,1+NW+IW)+
     >     DBLE(FLUXES(IREGIO,IGR,IW)*AFLUXE(IREGIO,IGR,IW)*VOL)
  150    CONTINUE
  151    CONTINUE
         IF(IADJ.EQ.1) THEN
           DO 153 IW=1,NW+1
           GAS(IGRCND,1+NW+IW)=GAS(IGRCND,1+NW+IW)*VOLMER/GAS(IGRCND,IW)
  153      CONTINUE
         ENDIF
  154    CONTINUE
         LONE=.TRUE.
         DO 250 JSO=ISO,NBISO
         IF((ISONAM(1,ISO).EQ.ISONAM(1,JSO)).AND.
     1      (ISONAM(2,ISO).EQ.ISONAM(2,JSO)).AND.
     2      (MATNUM.EQ.MIX(JSO)).AND.(LSISO(JSO).NE.0)) THEN
            IF(LISO) THEN
              IF(ISONAM(3,ISO).EQ.ISONAM(3,JSO)) GOTO 155
              GOTO 250
            ENDIF
  155       LOGIC=.TRUE.
            ITYPS(ISO)=MAX(ITYPS(ISO),ITYPE(JSO))
            DENVOL=MAX(DEN(JSO),1.0E-20)*VOL
            DDEN=DDEN+DENVOL
            DDENZ=DDENZ+DEN(JSO)*VOL
            KPLIB=IPISO(JSO) ! set JSO-th isotope
            IF(LONE) THEN
               CALL LCMLEN(KPLIB,'AWR',LENGTH,ITYLCM)
               LAWR=(LENGTH.EQ.1)
               IF(LAWR) CALL LCMGET(KPLIB,'AWR',AWR)
               CALL LCMLEN(KPLIB,'MEVF',LENGTH,ITYLCM)
               IF(LENGTH.EQ.1) CALL LCMGET(KPLIB,'MEVF',EMEVF(ISO))
               LMEVF=(LENGTH.EQ.1).OR.(EMEVF(ISO).GT.0.0)
               CALL LCMLEN(KPLIB,'MEVG',LENGTH,ITYLCM)
               IF(LENGTH.EQ.1) CALL LCMGET(KPLIB,'MEVG',EMEVG(ISO))
               LMEVG=(LENGTH.EQ.1).OR.(EMEVG(ISO).GT.0.0)
               CALL LCMLEN(KPLIB,'DECAY',LENGTH,ITYLCM)
               IF(LENGTH.EQ.1) CALL LCMGET(KPLIB,'DECAY',DECAY(ISO))
               LDECA=(LENGTH.EQ.1).OR.(DECAY(ISO).GT.0.0)
               LONE=.FALSE.
            ENDIF
            DO 170 IL=0,NL-1
            WRITE (CM,'(I2.2)') IL
            CALL LCMLEN(KPLIB,'SIGS'//CM,LENGTH,ITYLCM)
            IF(LENGTH.EQ.NGROUP) THEN
               CALL LCMGET(KPLIB,'SIGS'//CM,GAR(1,4+3*NW+IL))
               HMAKE(4+3*NW+IL)='SIGS'//CM
            ENDIF
            CALL LCMLEN(KPLIB,'NJJS'//CM,LENGTH,ITYLCM)
            IF(LENGTH.EQ.NGROUP) THEN
               CALL LCMGET(KPLIB,'NJJS'//CM,IGAR(1,1,1+IL))
               CALL LCMGET(KPLIB,'IJJS'//CM,IGAR(1,2,1+IL))
               CALL LCMGET(KPLIB,'SCAT'//CM,WGAR(1,1+IL))
               HMAKE(MAXH+1+IL)='SCAT'//CM
               IPO=0
               DO 160 IGR=1,NGROUP
               IGAR(IGR,3,1+IL)=IPO+1
               IPO=IPO+IGAR(IGR,1,1+IL)
  160          CONTINUE
            ENDIF
  170       CONTINUE
            DO IW=0,MIN(NW,9)
              WRITE(HMAKE(3+2*NW+IW),'(4HNTOT,I1)') IW
              CALL LCMLEN(KPLIB,HMAKE(3+2*NW+IW),ILONG,ITYLCM)
              IF(ILONG.NE.0) THEN
                CALL LCMGET(KPLIB,HMAKE(3+2*NW+IW),GAR(1,3+2*NW+IW))
              ELSE
                CALL LCMGET(KPLIB,'NTOT0',GAR(1,3+2*NW+IW))
              ENDIF
            ENDDO
            CALL LCMLEN(KPLIB,'NUSIGF',LENGTH,ITYLCM)
            IF(LENGTH.EQ.NGROUP) THEN
               CALL LCMGET(KPLIB,'NUSIGF',GAR(1,4+NL+3*NW))
               HMAKE(4+NL+3*NW)='NUSIGF'
            ENDIF
            CALL LCMLEN(KPLIB,'CHI',LENGTH,ITYLCM)
            IF(LENGTH.EQ.NGROUP) THEN
               CALL LCMGET(KPLIB,'CHI',GAR(1,1+IOF1H))
               HMAKE(1+IOF1H)='CHI'
            ENDIF
            IF(NDEL.GT.0) THEN
               WRITE(TEXT8,'(6HNUSIGF,I2.2)') NDEL
               CALL LCMLEN(KPLIB,TEXT8,LENGTH,ITYLCM)
               IF(LENGTH.EQ.NGROUP) THEN
                  DO 180 IDEL=1,NDEL
                  WRITE(TEXT8,'(6HNUSIGF,I2.2)') IDEL
                  CALL LCMGET(KPLIB,TEXT8,GAR(1,IOF0H+IDEL))
                  HMAKE(IOF0H+IDEL)=TEXT8
  180             CONTINUE
               ENDIF
               WRITE(TEXT8,'(3HCHI,I2.2)') NDEL
               CALL LCMLEN(KPLIB,TEXT8,LENGTH,ITYLCM)
               IF(LENGTH.EQ.NGROUP) THEN
                  DO 184 IDEL=1,NDEL
                  WRITE(TEXT8,'(3HCHI,I2.2)') IDEL
                  CALL LCMGET(KPLIB,TEXT8,GAR(1,1+IOF1H+IDEL))
                  HMAKE(1+IOF1H+IDEL)=TEXT8
  184             CONTINUE
               ENDIF
            ENDIF
            DO 185 ISP=1,NBESP
            WRITE(TEXT8,'(5HCHI--,I2.2)') ISP
            CALL LCMLEN(KPLIB,TEXT8,LENGTH,ITYLCM)
            IF(LENGTH.EQ.NGROUP) THEN
               CALL LCMGET(KPLIB,TEXT8,GAR(1,1+IOF2H+ISP))
               HMAKE(1+IOF2H+ISP)=TEXT8
            ENDIF
  185       CONTINUE
            IF(ITRANC.NE.0) THEN
               CALL LCMGET(KPLIB,'TRANC',GAR(1,7+NED+NL+3*NW))
               HMAKE(7+NED+NL+3*NW)='TRANC'
            ENDIF
            DO 186 IGR=1,NGROUP
            GAR(IGR,5+NED+NL+3*NW)=0.0
  186       CONTINUE
            CALL LCMLEN(KPLIB,'H-FACTOR',LENGTH,ITYLCM)
            IF(LENGTH.GT.0) THEN
               CALL LCMGET(KPLIB,'H-FACTOR',GAR(1,5+NED+NL+3*NW))
               HMAKE(5+NED+NL+3*NW)='H-FACTOR'
            ELSE
               IF(LMEVF) THEN
                  CALL LCMGET(KPLIB,'NFTOT',WORK)
                  HMAKE(5+NED+NL+3*NW)='H-FACTOR'
                  DO 190 IGR=1,NGROUP
                  GAR(IGR,5+NED+NL+3*NW)=GAR(IGR,5+NED+NL+3*NW)+
     1            WORK(IGR)*EMEVF(ISO)*REAL(CONV)
  190             CONTINUE
               ENDIF
               IF(LMEVG) THEN
                  CALL LCMGET(KPLIB,'NG',WORK)
                  HMAKE(5+NED+NL+3*NW)='H-FACTOR'
                  DO 195 IGR=1,NGROUP
                  GAR(IGR,5+NED+NL+3*NW)=GAR(IGR,5+NED+NL+3*NW)+
     1            WORK(IGR)*EMEVG(ISO)*REAL(CONV)
  195             CONTINUE
               ENDIF
            ENDIF
            DO 200 IED=1,NED
            IF(HVECT(IED).EQ.'H-FACTOR') GO TO 200
            CALL LCMLEN(KPLIB,HVECT(IED),LENGTH,ITYLCM)
            IF((LENGTH.GT.0).AND.(HVECT(IED).NE.'TRANC')) THEN
               CALL LCMGET(KPLIB,HVECT(IED),GAR(1,4+NL+3*NW+IED))
               HMAKE(4+NL+3*NW+IED)=HVECT(IED)
            ENDIF
  200       CONTINUE
            CALL LCMLEN(KPLIB,'OVERV',LENGTH,ITYLCM)
            IF(LENGTH.GT.0) THEN
               CALL LCMGET(KPLIB,'OVERV',GAR(1,6+NED+NL+3*NW))
            ELSE
               ALLOCATE(ENR(NGROUP+1))
               CALL LCMGET(IPLIB,'ENERGY',ENR)
               IF(ENR(NGROUP+1).EQ.0.0) ENR(NGROUP+1)=1.0E-5
               DO 205 IGR=1,NGROUP
               ENEAVG=SQRT(ENR(IGR)*ENR(IGR+1))
               GAR(IGR,6+NED+NL+3*NW)=1.0/(REAL(SQFMAS)*SQRT(ENEAVG))
  205          CONTINUE
               DEALLOCATE(ENR)
            ENDIF
            HMAKE(6+NED+NL+3*NW)='OVERV'
*
            IGRFIN=0
            DO 242 IGRCND=1,NGCOND
            IGRDEB=IGRFIN+1
            IGRFIN=IGCOND(IGRCND)
            DO 241 IGR=IGRDEB,IGRFIN
            PARM0=FLUXES(IREGIO,IGR,1)*DENVOL
            PARM3=0.0D0
            PARM4=0.0D0
            PARM12(:NW+1)=0.0D0
            IF(IADJ.EQ.0) THEN
              DO 206 IW=1,NW+1
                PARM12(IW)=FLUXES(IREGIO,IGR,IW)*DENVOL
  206         CONTINUE
              PARM3=0.0D0
              DO 210 JREGIO=1,NREGIO
              IF(IMERGE(JREGIO).EQ.INM) THEN
                PARM3=PARM3+FLUXES(JREGIO,IGR,1)*VOLUME(JREGIO)
              ENDIF
  210         CONTINUE
              PARM3=DENVOL*PARM3/VOLMER
              PARM4=DENVOL
            ELSE IF(IADJ.EQ.1) THEN
              DO 211 IW=1,NW+1
                PARM12(IW)=FLUXES(IREGIO,IGR,IW)*AFLUXE(IREGIO,IGR,IW)*
     >          DENVOL
  211         CONTINUE
              PARM3=0.0D0
              DO 212 JREGIO=1,NREGIO
              IF(IMERGE(JREGIO).EQ.INM) THEN
                PARM3=PARM3+FLUXES(JREGIO,IGR,1)*AFLUXE(JREGIO,IGR,1)*
     >          VOLUME(JREGIO)
              ENDIF
  212         CONTINUE
              PARM3=DENVOL*PARM3/VOLMER
              PARM4=AFLUXE(IREGIO,IGR,1)*DENVOL
            ENDIF
            DO 215 J=3+2*NW,MAXH
            IF(HMAKE(J).NE.' ') THEN
              IF(J.EQ.6+NED+NL+3*NW) THEN
                GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM3 ! OVERV
              ELSE IF((J.EQ.4+NL+3*NW).OR.
     >          ((J.GE.1+IOF0H).AND.(J.LE.NDEL+IOF0H))) THEN
                GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM0 ! nu*fission cross sections
              ELSE IF((J.GE.1+IOF1H).AND.(J.LE.MAXH)) THEN
                GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM4 ! fission spectrum
              ELSE IF((J.GE.4+2*NW).AND.(J.LE.3+3*NW)) THEN
                IW=J-2-2*NW                      ! NTOT1 cross sections
                GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM12(IW)
              ELSE IF((J.GE.5+3*NW).AND.(J.LE.3+NL+3*NW)) THEN
                IW=MIN(J-3-3*NW,NW+1)            ! SOGS01 cross sections
                GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM12(IW)
              ELSE IF(J.EQ.8+NED+NL+3*NW) THEN
                GO TO 215 ! STRD case
              ELSE IF(J.LE.IOF1H) THEN
                GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM12(1) ! P0 cross sections
              ENDIF
            ENDIF
  215       CONTINUE
            DO 240 IL=0,NL-1
            IF(HMAKE(MAXH+1+IL).NE.' ') THEN
*              IGRCND IS THE SECONDARY GROUP.
               IW=MIN(IL,NW)+1
               NGSCAT=IGAR(IGR,1,1+IL)
               IGSCAT=IGAR(IGR,2,1+IL)
               JGRFIN=0
               DO 230 JGRCND=1,NGCOND
               JGRDEB=JGRFIN+1
               JGRFIN=IGCOND(JGRCND)
               J2=MIN(JGRFIN,IGSCAT)
               J1=MAX(JGRDEB,IGSCAT-NGSCAT+1)
               TMP=0.0D0
               IPO=IGAR(IGR,3,1+IL)+IGSCAT-J2
               DO 220 JGR=J2,J1,-1
               IF(IADJ.EQ.0) THEN
                 TMP=TMP+WGAR(IPO,1+IL)*FLUXES(IREGIO,JGR,IW)*DENVOL
               ELSE IF(IADJ.EQ.1) THEN
                 TMP=TMP+WGAR(IPO,1+IL)*AFLUXE(IREGIO,IGR,IW)*
     >           FLUXES(IREGIO,JGR,IW)*DENVOL
               ENDIF
               IPO=IPO+1
  220          CONTINUE
               WSCAT(IGRCND,JGRCND,1+IL)=WSCAT(IGRCND,JGRCND,1+IL)+TMP
  230          CONTINUE
            ENDIF
  240       CONTINUE
  241       CONTINUE
  242       CONTINUE
            MASK(JSO)=.TRUE.
            GO TO 250
         ENDIF
  250    CONTINUE
      ENDIF
  260 CONTINUE
      DEALLOCATE(PARM12)
      IF(LOGIC) THEN
         JJISO=JJISO+1
         IF(JJISO.GT.MAXISO) CALL XABORT('EDIMIC: INSUFFICIENT ALLOCAT'
     1   //'ED SPACE FOR ISMIX, ISTYP, SDEN, VOLISO AND IHNISO.')
         IF(LISO) THEN
           WRITE(HNEW,'(3A4)') (ISONAM(I0,ISO),I0=1,3)
         ELSE
           WRITE(HNEW,'(2A4,I4.4)') (ISONAM(I0,ISO),I0=1,2),INM
         ENDIF
         READ(HNEW,'(3A4)') (IHNISO(I0,JJISO),I0=1,3)
         ISMIX(JJISO)=INM
         ISTYP(JJISO)=ISO
         SDEN(JJISO)=REAL(DDENZ/VOLMER)
         VOLISO(JJISO)=REAL(VOLMER)
         TNISO(JJISO)=TN(ISO)
         IF(IPRINT.GT.1) THEN
           WRITE (6,600) HNEW,JJISO
           WRITE(6,'(/17H NUMBER DENSITY =,1P,E12.4)') DDEN/VOLMER
         ENDIF
         IF(NDFI.GT.0) THEN
           IFI=FIPI(ISO,INM)
           IF(IFI.GT.0) THEN
             JJNDFI=JJNDFI+1
             IF(JJNDFI.GT.MAXISO) CALL XABORT('EDIMIC: JPIFI OVERFLOW.')
             JPIFI(JJNDFI)=JJISO
             IF(IPRINT.GT.1) WRITE(6,'(24H FISSILE ISOTOPE INDEX =,I5)')
     1       JJNDFI
           ENDIF
         ENDIF
*
*        UP-SCATTERING CORRECTIONS.
         IF(ILUPS.EQ.1) THEN
            DO 282 JGR=2,NGCOND
            DO 281 IGR=1,JGR-1 ! IGR < JGR
            GAS(3+2*NW,IGR)=GAS(3+2*NW,IGR)-WSCAT(IGR,JGR,1)
            GAS(3+2*NW,JGR)=GAS(3+2*NW,JGR)-WSCAT(IGR,JGR,1)
            IF((NW.GE.1).AND.(NL.GE.1)) THEN
              GAS(4+2*NW,IGR)=GAS(4+2*NW,IGR)-WSCAT(IGR,JGR,2)
              GAS(4+2*NW,JGR)=GAS(4+2*NW,JGR)-WSCAT(IGR,JGR,2)
            ENDIF
            DO 280 IL=0,NL-1
            GAS(4+3*NW+IL,IGR)=GAS(4+3*NW+IL,IGR)-WSCAT(IGR,JGR,1+IL)
            GAS(4+3*NW+IL,JGR)=GAS(4+3*NW+IL,JGR)-WSCAT(IGR,JGR,1+IL)
            WSCAT(JGR,IGR,1+IL)=WSCAT(JGR,IGR,1+IL)-WSCAT(IGR,JGR,1+IL)
            WSCAT(IGR,JGR,1+IL)=0.0D0
  280       CONTINUE
  281       CONTINUE
  282       CONTINUE
         ENDIF
*
         ALLOCATE(PHIAV(NW+1),AHIAV(NW+1))
         DO 360 IGRCND=1,NGCOND
*
*        DIVIDE MATRIX XS BY INTEGRATED FLUX
         DO 341 IL=0,NL-1
         IW=MIN(IL,NW)+1
         PHIAV(IW)=GAS(IGRCND,IW)/VOLMER
         TMP=GAS(IGRCND,4+3*NW+IL)
         DO 330 JGRCND=1,NGCOND
         IF(JGRCND.NE.IGRCND) TMP=TMP-WSCAT(JGRCND,IGRCND,1+IL)
  330    CONTINUE
         QEN=REAL(MAX(ABS(TMP),ABS(WSCAT(IGRCND,IGRCND,1+IL))))
         IF((QEN.GT.0.0).AND.(IADJ.EQ.0)) THEN
            ERR=ABS(REAL(TMP-WSCAT(IGRCND,IGRCND,1+IL)))/QEN
            IF(ERR.GT.1.0E-3) WRITE(6,620) IGRCND,IL,100.0*ERR,HNEW
            WSCAT(IGRCND,IGRCND,1+IL)=TMP
         ENDIF
         DO 340 JGRCND=1,NGCOND
         AHIAV(IW)=1.0D0
         IF(IADJ.EQ.1) AHIAV(IW)=GAS(JGRCND,1+NW+IW)/VOLMER
         IF(PHIAV(IW).GT.0.0D0) THEN
            WSCAT(JGRCND,IGRCND,1+IL)=WSCAT(JGRCND,IGRCND,1+IL)
     1      /(DDEN*AHIAV(IW)*PHIAV(IW))
         ELSE
            WSCAT(JGRCND,IGRCND,1+IL)=0.0D0
         ENDIF
  340    CONTINUE
  341    CONTINUE
*
*        DIVIDE VECTORIAL XS BY INTEGRATED FLUX
         DO 345 IW=1,NW+1
         PHIAV(IW)=GAS(IGRCND,IW)/VOLMER
         AHIAV(IW)=1.0
         IF(IADJ.EQ.1) AHIAV(IW)=GAS(IGRCND,1+NW+IW)/VOLMER
  345    CONTINUE
         DO 350 J=3+2*NW,MAXH
         IF((J.EQ.4+NL+3*NW).OR.
     >      ((J.GE.1+IOF0H).AND.(J.LE.NDEL+IOF0H))) THEN
            IF(PHIAV(1).GT.0.0D0) THEN
               GAS(IGRCND,J)=GAS(IGRCND,J)/(DDEN*PHIAV(1)) ! nu*fission cross sections
            ELSE
               GAS(IGRCND,J)=0.0D0
            ENDIF
         ELSE IF((J.GE.1+IOF1H).AND.(J.LE.MAXH)) THEN
            GAS(IGRCND,J)=GAS(IGRCND,J)/(DDEN*AHIAV(1)) ! fission spectrum
         ELSE IF((J.GE.4+2*NW).AND.(J.LE.3+3*NW)) THEN
            IW=J-2-2*NW
            IF(PHIAV(IW).NE.0.0) THEN
              GAS(IGRCND,J)=GAS(IGRCND,J)/(DDEN*AHIAV(IW)*PHIAV(IW)) ! NTOT1 cross sections
            ELSE
              GAS(IGRCND,J)=0.0D0
            ENDIF
         ELSE IF((J.GE.5+3*NW).AND.(J.LE.3+NL+3*NW)) THEN
            IW=MIN(J-3-3*NW,NW+1)
            IF(PHIAV(IW).NE.0.0) THEN
              GAS(IGRCND,J)=GAS(IGRCND,J)/(DDEN*AHIAV(IW)*PHIAV(IW)) ! SIGS01 cross sections
            ELSE
              GAS(IGRCND,J)=0.0D0
            ENDIF
         ELSE IF(J.EQ.8+NED+NL+3*NW) THEN
            GO TO 350 ! STRD case
         ELSE IF(PHIAV(1).GT.0.0D0) THEN
            GAS(IGRCND,J)=GAS(IGRCND,J)/(DDEN*AHIAV(1)*PHIAV(1)) ! P0 cross sections
         ELSE
            GAS(IGRCND,J)=0.0D0
         ENDIF
  350    CONTINUE
*
         IF(LSTRD) THEN
            J=8+NED+NL+3*NW
            HMAKE(J)='STRD'
            IF(NW.GE.1) THEN
               GAS(IGRCND,J)=GAS(IGRCND,4+2*NW)
            ELSE
               GAS(IGRCND,J)=GAS(IGRCND,3+2*NW)
            ENDIF
            IF((HMAKE(5+3*NW).NE.' ').AND.(NL.GE.2)) THEN
               GAS(IGRCND,J)=GAS(IGRCND,J)-GAS(IGRCND,5+3*NW)
            ENDIF
            GAS(IGRCND,J)=GAS(IGRCND,J)*WSTRD(IGRCND)
         ENDIF
  360    CONTINUE
         DEALLOCATE(AHIAV,PHIAV)
*
*        DIVIDE INTEGRATED FLUXES BY VOLUMES
         DO 366 IW=1,NW+1
         DO 365 IGRCND=1,NGCOND
         GAS(IGRCND,IW)=GAS(IGRCND,IW)/VOLMER
         IF(IADJ.EQ.1) GAS(IGRCND,NW+IW)=GAS(IGRCND,NW+IW)/VOLMER
  365    CONTINUE
  366    CONTINUE
*
         IF(CURNAM.NE.' ') THEN
            IF(NOUT.GT.0) THEN
              DO J=1,MAXH+NL
                DO IOUT=1,NOUT
                  IF(HMAKE(J).EQ.HVOUT(IOUT)) GO TO 370
                ENDDO
                HMAKE(J)=' '
  370           CONTINUE
              ENDDO
            ENDIF
            KPEDIT=LCMDIL(JPEDIT,JJISO) ! set JJISO-th isotope
            CALL LCMPTC(KPEDIT,'ALIAS',12,HNEW)
            IF(LAWR)  CALL LCMPUT(KPEDIT,'AWR',1,2,AWR)
            IF(LMEVF) CALL LCMPUT(KPEDIT,'MEVF',1,2,EMEVF(ISO))
            IF(LMEVG) CALL LCMPUT(KPEDIT,'MEVG',1,2,EMEVG(ISO))
            IF(LDECA) CALL LCMPUT(KPEDIT,'DECAY',1,2,DECAY(ISO))
            DO 380 J=1,MAXH
            IF(HMAKE(J).NE.' ') THEN
              DO 375 IGCD=1,NGCOND
                TMPXS(IGCD)=REAL(GAS(IGCD,J))
  375         CONTINUE
              CALL LCMPUT(KPEDIT,HMAKE(J),NGCOND,2,TMPXS)
            ENDIF
  380       CONTINUE
            DO 390 IL=1,NL
            ITYPRO(IL)=0
            IF(HMAKE(MAXH+IL).NE.' ') ITYPRO(IL)=1
  390       CONTINUE
            IF(ITYPRO(1).EQ.0) GO TO 405
            ALLOCATE(GA1(NL*NGCOND),GA2(NL*NGCOND*NGCOND))
            IOF1=0
            IOF2=0
            DO 402 IL=1,NL
            DO 401 IG2=1,NGCOND
            IOF1=IOF1+1
            GA1(IOF1)=REAL(GAS(IG2,3+3*NW+IL))
            DO 400 IG1=1,NGCOND
            IOF2=IOF2+1
            GA2(IOF2)=REAL(WSCAT(IG1,IG2,IL))
  400       CONTINUE
  401       CONTINUE
  402       CONTINUE
            CALL XDRLGS(KPEDIT,1,IPRINT,0,NL-1,1,NGCOND,GA1,GA2,ITYPRO)
            DEALLOCATE(GA2,GA1)
  405       IF(NDEL.NE.0) THEN
               IF(HMAKE(IOF0H+1).NE.' ') THEN
                  CALL LCMPUT(KPEDIT,'LAMBDA-D',NDEL,2,WDLA)
               ENDIF
            ENDIF
         ENDIF
         IF(IPRINT.GT.3) THEN
            DO 410 J=1,MAXH
            IF(HMAKE(J).NE.' ') THEN
               WRITE (6,610) HMAKE(J),(GAS(I,J),I=1,NGCOND)
            ENDIF
  410       CONTINUE
            WRITE (6,610) 'SIGA    ',(GAS(I,3+2*NW)-GAS(I,4+3*NW),
     >                    I=1,NGCOND)
            WRITE (6,610) 'SIGW00  ',(WSCAT(I,I,1),I=1,NGCOND)
            IF(NL.GT.1) THEN
               WRITE (6,610) 'SIGW01  ',(WSCAT(I,I,2),I=1,NGCOND)
            ENDIF
            IF(LWD) WRITE (6,610) 'LAMBDA-D',(WDLA(I),I=1,NDEL)
         ENDIF
         IF(IPRINT.GT.4) CALL LCMLIB(KPEDIT)
      ENDIF
  420 CONTINUE
  430 CONTINUE
      IF(CURNAM.NE.' ') CALL LCMSIX(IPEDIT,' ',2)
*----
*  VALIDATE FISSION YIELD DATA
*----
      IF((NDFI.GT.0).AND.(JJISO.GT.0)) THEN
        DO 470 INM=1,NMERGE
        DO 460 ISO=1,NBISO
        IF((DEN(ISO).EQ.0.0).OR.(IEVOL(ISO).EQ.1)) GO TO 460
        IF(ITYPE(ISO).EQ.2) THEN
          IF(FIPI(ISO,INM).NE.0) THEN
            ! microlib isotope ISO is a fissile isotope
            DO 450 J=1,JJNDFI
            JJSO=JPIFI(J) ! condensed isotope JJSO is a fissile isotope
            IF(JJSO.EQ.0) GO TO 450
            JSO=ISTYP(JJSO)
            IF((ISMIX(JJSO).EQ.INM).AND.(ISONAM(1,ISO).EQ.ISONAM(1,JSO))
     1         .AND.(ISONAM(2,ISO).EQ.ISONAM(2,JSO))) GO TO 460
  450       CONTINUE
            WRITE(HNAMIS,'(3A4)') (ISONAM(I0,ISO),I0=1,3)
            WRITE(HSMG,'(29HEDIMIC: THE FISSILE ISOTOPE '',A8,
     1      34H'' MUST BE SELECTED IN MICR OPTION.)') HNAMIS(:8)
            CALL XABORT(HSMG)
          ENDIF
        ENDIF
  460   CONTINUE
  470   CONTINUE
      ENDIF
*
      IF(CURNAM.NE.' ') THEN
        CALL LCMSIX(IPEDIT,CURNAM,1)
        TEXT12='L_LIBRARY'
        CALL LCMPTC(IPEDIT,'SIGNATURE',12,TEXT12)
*----
*  FIND THE MAXIMUM NUMBER OF ISOTOPES PER MIXTURE
*----
        MAXISM=0
        DO 490 INM=1,NMERGE
        MAX0=0
        DO 480 IISO=1,JJISO
        IF(ISMIX(IISO).EQ.INM) MAX0=MAX0+1
  480   CONTINUE
        MAXISM=MAX(MAXISM,MAX0)
  490   CONTINUE
*----
*  SAVE FISSION YIELD DATA
*----
        IF(NDFI.GT.0) THEN
          DO 520 INM=1,NMERGE
          DO 510 IISO=1,JJISO
          IF(ISMIX(IISO).EQ.INM) THEN
            ISO=ISTYP(IISO)
            ISOFP=FIFP(ISO,INM)
            IF(ISOFP.GT.0) THEN
              ! condensed isotope IISO is a fission fragment
              IF(ISOFP.GT.NDFP) CALL XABORT('EDIMIC: YIELD OVERFLOW.')
              KPEDIT=LCMGIL(JPEDIT,IISO) ! set IISO-th isotope
              YPIFI(:JJNDFI)=0.0
              DO 500 J=1,JJNDFI
              JJSO=JPIFI(J) ! condensed isotope JJSO is fissile
              JSO=ISTYP(JJSO)
              IFI=FIPI(JSO,INM)
              IF(IFI.GT.0) YPIFI(J)=PYIELD(IFI,ISOFP,INM)
  500         CONTINUE
              CALL LCMPUT(KPEDIT,'YIELD',NGCOND+1,2,YIELD(1,ISOFP,INM))
              IF(JJNDFI.GT.0) THEN
                CALL LCMPUT(KPEDIT,'PYIELD',JJNDFI,2,YPIFI)
                CALL LCMPUT(KPEDIT,'PIFI',JJNDFI,1,JPIFI)
              ENDIF
            ENDIF
          ENDIF
  510     CONTINUE
  520     CONTINUE
        ENDIF
*----
*  SAVE EDITION MICROLIB
*----
        IF(NED.GT.0) CALL LCMPTC(IPEDIT,'ADDXSNAME-P0',8,NED,HVECT)
        NCOMB=0
        IF(JJISO.GT.0) THEN
           CALL LCMPUT(IPEDIT,'ISOTOPESUSED',3*JJISO,3,IHNISO)
           CALL LCMPUT(IPEDIT,'ISOTOPESMIX',JJISO,1,ISMIX)
           CALL LCMPUT(IPEDIT,'ISOTOPESVOL',JJISO,2,VOLISO)
           CALL LCMPUT(IPEDIT,'ISOTOPESTEMP',JJISO,2,TNISO)
           CALL LCMPUT(IPEDIT,'ISOTOPESDENS',JJISO,2,SDEN)
           DO 550 IISO=1,JJISO
           DO 530 I0=1,3
           IHNISO(I0,IISO)=ISONRF(I0,ISTYP(IISO))
  530      CONTINUE
           ISTOD(IISO)=IEVOL(ISTYP(IISO))
           ISTYP(IISO)=ITYPS(ISTYP(IISO))
           IF((ISTOD(IISO).NE.1).AND.(ISTYP(IISO).GE.1)) THEN
              INM=ISMIX(IISO)
              IF(INM.EQ.0) GO TO 550
              DO 540 J=1,NCOMB
              IF(INM.EQ.MILVO(J)) GO TO 550
  540         CONTINUE
              NCOMB=NCOMB+1
              IF(NCOMB.GT.NMERGE) CALL XABORT('EDIMIC: MILVO OVERFLOW.')
              MILVO(NCOMB)=INM
           ENDIF
  550      CONTINUE
           CALL LCMPUT(IPEDIT,'ISOTOPERNAME',3*JJISO,3,IHNISO)
           CALL LCMPUT(IPEDIT,'ISOTOPESTODO',JJISO,1,ISTOD)
           CALL LCMPUT(IPEDIT,'ISOTOPESTYPE',JJISO,1,ISTYP)
        ENDIF
        ALLOCATE(VOLM(NMERGE))
        VOLM(:NMERGE)=0.0
        DO 560 IREGIO=1,NREGIO
        INM=IMERGE(IREGIO)
        IF(INM.GT.0) VOLM(INM)=VOLM(INM)+VOLUME(IREGIO)
  560   CONTINUE
        CALL LCMPUT(IPEDIT,'MIXTURESVOL',NMERGE,2,VOLM)
        CALL LCMPUT(IPEDIT,'K-EFFECTIVE',1,2,EIGENK)
        CALL LCMPUT(IPEDIT,'K-INFINITY',1,2,EIGINF)
        IF(ILEAKS.GT.0) CALL LCMPUT(IPEDIT,'B2  B1HOM',1,2,B2(4))
        DEALLOCATE(VOLM)
        ALLOCATE(ENR(NGROUP+1))
        CALL LCMGET(IPLIB,'ENERGY',ENR)
        DO 570 IGRCND=1,NGCOND
        ENR(IGRCND+1)=ENR(IGCOND(IGRCND)+1)
  570   CONTINUE
        IF(ENR(NGCOND+1).EQ.0.0) ENR(NGCOND+1)=1.0E-5
        CALL LCMPUT(IPEDIT,'ENERGY',NGCOND+1,2,ENR)
        DO 580 IGRCND=1,NGCOND
        ENR(IGRCND)=LOG(ENR(IGRCND)/ENR(IGRCND+1))
  580   CONTINUE
        CALL LCMPUT(IPEDIT,'DELTAU',NGCOND,2,ENR)
        NBESP2=0
        IF(NBESP.GT.0) THEN
          IF(NBESP.GT.MAXESP) CALL XABORT('EDIMIC: MAXESP OVERFLOW.')
          CALL LCMGET(IPLIB,'CHI-ENERGY',EESP)
          EESP2(1)=ENR(1)
          IESP2(1)=0
          IIG=0
          DO IG=1,NGCOND+1
            IF(IIG.GT.NBESP) CALL XABORT('EDIMIC: BAD LIMITS FOR ENERG'
     1      //'Y-DEPENDENT FISSION SPECTRA.')
            IF(EESP(IIG+1).GE.0.999*ENR(IG)) THEN
              IIG=IIG+1
              EESP2(IIG)=ENR(IG)
              IESP2(IIG)=IG-1
            ENDIF
          ENDDO
          NBESP2=IIG-1
          IF(IPRINT.GT.3) THEN
            WRITE(6,'(/42H EDIMIC: ENERGY-DEPENDENT FISSION SPECTRA:)')
            WRITE(6,'(5X,5I12)') IESP2(:NBESP2+1)
            WRITE(6,'(5X,1P,5E12.4)') EESP2(:NBESP2+1)
          ENDIF
          CALL LCMPUT(IPEDIT,'CHI-ENERGY',NBESP2+1,2,EESP2)
          CALL LCMPUT(IPEDIT,'CHI-LIMITS',NBESP2+1,1,IESP2)
        ENDIF
        DEALLOCATE(ENR)
        IPAR(:NSTATE)=0
        IPAR(1)=NMERGE
        IPAR(2)=JJISO
        IPAR(3)=NGCOND
        IPAR(4)=NL
        IPAR(5)=ITRANC
        IF(ITRANC.NE.0) IPAR(5)=2
        IPAR(7)=1
        IPAR(11)=NDEPL
        IPAR(12)=NCOMB
        IPAR(13)=NED
        IPAR(14)=NMERGE
        IPAR(16)=NBESP2
        IPAR(18)=1
        IPAR(19)=NDEL
        IPAR(20)=JJNDFI
        IPAR(22)=MAXISM
        IPAR(25)=NW
        CALL LCMPUT(IPEDIT,'STATE-VECTOR',NSTATE,1,IPAR)
        IF(IPRINT.GT.3) THEN
           WRITE(6,630) IPRINT,(IPAR(I),I=1,13)
           WRITE(6,640) (IPAR(I),I=14,25)
        ENDIF
        CALL LCMSIX(IPEDIT,' ',2)
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(YPIFI,JPIFI)
      DEALLOCATE(HMAKE)
      DEALLOCATE(GAS,WSCAT)
      DEALLOCATE(WORK,WDLA,TMPXS,TNISO,VOLISO,SDEN,WSTRD,DIFHET,XSECT,
     1 WGAR,GAR)
      DEALLOCATE(MASK)
      DEALLOCATE(IMERGL,ITYPS,MILVO,ITYPRO,ISTOD,ISTYP,ISMIX,IHNISO,
     1 IGAR)
      RETURN
*
  600 FORMAT (//44H CROSS SECTION OF MERGED/CONDENSED ISOTOPE ',A12,
     1 7H' (ISO=,I8,2H):)
  610 FORMAT (/11H REACTION ',A12,2H':/(1X,1P,10E12.4))
  620 FORMAT(/53H EDIMIC: *** WARNING *** NORMALIZATION OF THE WITHIN-,
     1 34HGROUP SCATTERING TRANSFER IN GROUP,I4,10H AND ORDER,I3,3H BY,
     2 F6.2,9H% ISOTOPE,2H=',A12,2H'.)
  630 FORMAT(/8H OPTIONS/8H -------/
     1 7H IPRINT,I6,30H   (0=NO PRINT/1=SHORT/2=MORE)/
     2 7H MAXMIX,I6,31H   (MAXIMUM NUMBER OF MIXTURES)/
     3 7H NBISO ,I6,36H   (NUMBER OF ISOTOPES OR MATERIALS)/
     4 7H NGRP  ,I6,28H   (NUMBER OF ENERGY GROUPS)/
     5 7H NL    ,I6,30H   (NUMBER OF LEGENDRE ORDERS)/
     6 7H ITRANC,I6,45H   (0=NO TRANSPORT CORRECTION/1=APOLLO TYPE/2,
     7 57H=RECOVER FROM LIBRARY/3=WIMS-D TYPE/4=LEAKAGE CORRECTION)/
     8 7H IPROB ,I6,23H   (0=DIRECT/1=ADJOINT)/
     9 7H ITIME ,I6,28H   (1=STEADY-STATE/2=PROMPT)/
     1 7H NLIB  ,I6,32H   (NUMBER OF SETS OF LIBRARIES)/
     2 7H NGF   ,I6,48H   (NUMBER OF FAST GROUP WITHOUT SELF-SHIELDING)/
     3 7H IGRMAX,I6,41H   (LAST GROUP INDEX WITH SELF-SHIELDING)/
     4 7H NDEPL ,I6,33H   (NUMBER OF DEPLETING ISOTOPES)/
     5 7H NCOMB ,I6,33H   (NUMBER OF DEPLETING MIXTURES)/
     6 7H NEDMAC,I6,34H   (NUMBER OF CROSS SECTION EDITS))
  640 FORMAT(7H NBMIX ,I6,23H   (NUMBER OF MIXTURES)/
     1 7H NRES  ,I6,40H   (NUMBER OF SETS OF RESONANT MIXTURES)/
     2 7H NBESP ,I6,47H   (NUMBER OF ENERGY-DEPENDENT FISSION SPECTRA)/
     3 7H IPROC ,I6,48H   (-1=SKIP LIBRARY PROCESSING/0=DILUTION INTERP,
     4 48HOLATION/1=USE PHYSICAL TABLES/2=BUILD A DRAGLIB/,
     5 55H3=COMPUTE CALENDF TABLES/4=COMPUTE SLOWING-DOWN TABLES)/
     6 7H IMAC  ,I6,45H   (0=DO NOT/1=DO BUILD AN EMBEDDED MACROLIB)/
     7 7H NDEL  ,I6,31H   (NUMBER OF PRECURSOR GROUPS)/
     8 7H NFISS ,I6,43H   (NUMBER OF FISSILE ISOTOPES IN MICROLIB)/
     9 7H ISOADD,I6,37H   (0=COMPLETE BURNUP CHAIN/1=DO NOT)/
     1 7H MAXISM,I6,40H   (MAX. NUMBER OF ISOTOPES PER MIXTURE)/
     2 7H IPRECI,I6,34H   (CALENDF ACCURACY FLAG:1/2/3/4)/
     3 7H IADF  ,I6,23H   (ADF FLAG:0/1/2/3/4)/
     4 7H NW    ,I6,47H   (=0: FLUX WEIGHTING FOR P1 INFO; =1: CURRENT,
     5 23H WEIGHTING FOR P1 INFO))
      END