1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
|
*DECK EDIMIC
SUBROUTINE EDIMIC(IPEDIT,IPFLUX,IPLIB,IADJ,NL,NDEL,NBESP,NBISO,
1 NDEPL,ISONAM,ISONRF,IPISO,MIX,TN,NED,HVECT,NOUT,HVOUT,IPRINT,
2 NGROUP,NGCOND,NBMIX,NREGIO,NMERGE,NDFI,NDFP,ILEAKS,ILUPS,NW,
3 MATCOD,VOLUME,KEYFLX,CURNAM,IGCOND,IMERGE,FLUXES,AFLUXE,EIGENK,
4 EIGINF,B2,DEN,ITYPE,IEVOL,LSISO,EMEVF,EMEVG,DECAY,YIELD,FIPI,
5 FIFP,PYIELD,ITRANC,LISO,NMLEAK)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Homogenization and condensation of microscopic cross sections.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPEDIT pointer to the edition LCM object (L_EDIT signature).
* IPFLUX pointer to the solution LCM object (L_FLUX signature).
* IPLIB pointer to the reference microscopic cross section library
* LCM object (L_LIBRARY signature).
* IADJ type of flux weighting:
* =0: direct flux weighting;
* =1: direct-adjoint flux weighting.
* NL number of Legendre orders required in the calculation
* (NL=1 or higher).
* NDEL number of delayed precursor groups.
* NBESP number of energy-dependent fission spectra.
* NBISO number of isotopes.
* NDEPL number of depleting isotopes.
* ISONAM local names of NBISO isotopes:
* chars 1 to 8 is the local isotope name;
* chars 9 to 12 is a suffix function of the mix number.
* ISONRF library name of isotopes.
* IPISO pointer array towards microlib isotopes.
* MIX mixture number associated with each isotope.
* TN absolute temperature associated with each isotope.
* NED number of extra vector edits from MATXS.
* HVECT MATXS names of the extra vector edits.
* NOUT number of output cross section types (set to zero to recover
* all cross section types).
* HVOUT MATXS names of the output cross section types.
* IPRINT print index.
* NGROUP number of energy groups.
* NGCOND number of condensed groups.
* NBMIX number of mixtures.
* NREGIO number of volumes.
* NMERGE number of merged regions.
* NDFI number of fissile isotopes.
* NDFP number of fission products.
* ILEAKS leakage calculation type: =0: no leakage; =1: homogeneous
* leakage (Diffon); =2: isotropic streaming (Ecco);
* =3: anisotropic streaming (Tibere).
* ILUPS up-scattering removing flag (=1 to remove up-scattering from
* output cross-sections).
* NW type of weighting for P1 cross section info (=0: P0 ; =1: P1).
* MATCOD mixture index per volume.
* VOLUME volumes.
* KEYFLX position of average fluxes.
* CURNAM name of the LCM directory where the microscopic cross sections
* are stored (a blank value means no save).
* IGCOND limits of condensed groups.
* IMERGE index of merged regions.
* FLUXES fluxes.
* AFLUXE adjoint fluxes.
* EIGENK effective multiplication factor.
* EIGINF infinite multiplication factor.
* B2 bucklings.
* DEN number density of each isotope.
* ITYPE type of each isotope.
* IEVOL flag making an isotope non-depleting. A value of
* 1 is used to force an isotope to be non-depleting.
* LSISO flag for isotopes saved.
* EMEVF fission production energy.
* EMEVG capture production energy.
* DECAY radioactive decay constant.
* YIELD group-ordered condensed fission product yield.
* FIPI fissile isotope index assigned to each microlib isotope.
* FIFP fission product index assigned to each microlib isotope.
* PYIELD fissile isotope ordered condensed fission product yield.
* ITRANC type of transport correction (=0: no correction).
* LISO =.TRUE. if we want to keep all the isotopes after
* homogeneization.
* NMLEAK number of leakage zones.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPEDIT,IPFLUX,IPLIB,IPISO(NBISO)
INTEGER IADJ,NL,NDEL,NBESP,NBISO,NDEPL,ISONAM(3,NBISO),
1 ISONRF(3,NBISO),MIX(NBISO),NED,NOUT,IPRINT,NGROUP,
2 NGCOND,NBMIX,NREGIO,NMERGE,NDFI,NDFP,ILEAKS,ILUPS,NW,
3 MATCOD(NREGIO),KEYFLX(NREGIO),IGCOND(NGCOND),
4 IMERGE(NREGIO),ITYPE(NBISO),IEVOL(NBISO),LSISO(NBISO),
5 FIPI(NBISO,NMERGE),FIFP(NBISO,NMERGE),ITRANC,NMLEAK
REAL TN(NBISO),VOLUME(NREGIO),FLUXES(NREGIO,NGROUP,NW+1),
1 AFLUXE(NREGIO,NGROUP,NW+1),EIGENK,EIGINF,B2(4),
2 DEN(NBISO),EMEVF(NBISO),EMEVG(NBISO),DECAY(NBISO),
3 YIELD(NGCOND+1,NDFP,NMERGE),PYIELD(NDFI,NDFP,NMERGE)
CHARACTER HVECT(NED)*8,HVOUT(NOUT)*8,CURNAM*12
LOGICAL LISO
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40,MAXESP=4)
TYPE(C_PTR) JPLIB,KPLIB,JPFLUX,JPEDIT,KPEDIT
LOGICAL LOGIC,LSTRD,LAWR,LMEVF,LMEVG,LDECA,LWD,LONE
CHARACTER CM*2,HNEW*12,TEXT8*8,TEXT12*12,HSMG*131,HNAMIS*12
INTEGER IPAR(NSTATE),IESP2(MAXESP+1)
REAL B2T(3),EESP(MAXESP+1),EESP2(MAXESP+1)
DOUBLE PRECISION TMP,PARM0,PARM3,PARM4,VOLMER,DDEN,DDENZ,SQFMAS,
1 XDRCST,NMASS,EVJ,CONV,ZNU,ZDEN,ZFL1,ZFL2,DENVOL
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: ISMIX,ISTYP,ISTOD,ITYPRO,
1 JPIFI,MILVO,ITYPS,IMERGL
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: IHNISO
INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: IGAR
LOGICAL, ALLOCATABLE, DIMENSION(:) :: MASK
REAL, ALLOCATABLE, DIMENSION(:) :: XSECT,WSTRD,SDEN,VOLISO,TNISO,
1 TMPXS,WDLA,WORK,WORKF,ENR,GA1,GA2,VOLM,YPIFI
REAL, ALLOCATABLE, DIMENSION(:,:) :: GAR,WGAR,DIFHET
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: PARM12,PHIAV,AHIAV
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: GAS
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:) :: WSCAT
CHARACTER(LEN=8), ALLOCATABLE, DIMENSION(:) :: HMAKE
*----
* SCRATCH STORAGE ALLOCATION
*----
*
* GAR/GAS CONTENTS:
* 1 : 'NWT0' | P0 direct flux
* 2 : 'NWT1' | P1 direct flux / NW values
* ... |
* 2+NW : 'NWAT0' | P0 adjoint flux
* 3+NW : 'NWAT1' | P1 adjoint flux / NW values
* ... |
* 3+2*NW : 'NTOT0' | P0 total cross section
* 4+2*NW : 'NTOT1' | P1 total cross section / NW values
* ... |
* 4+3*NW : 'SIGS00' |
* 5+3*NW : 'SIGS01' | NL VALUES
* ... |
* 4+NL+3*NW : 'NUSIGF'
* 5+NL+3*NW : HVECT(1) |
* 6+NL+3*NW : HVECT(2) | NED VALUES
* ... |
* 5+NED+NL+3*NW : 'H-FACTOR'
* 6+NED+NL+3*NW : 'OVERV'
* 7+NED+NL+3*NW : 'TRANC'
* 8+NED+NL+3*NW : 'STRD'
* IOF0H+1 : 'NUSIGF01' |
* IOF0H+2 : 'NUSIGF02' | NDEL VALUES
* ... |
* IOF1H+NDEL+1 : 'CHI'
* IOF1H+NDEL+2 : 'CHI01' |
* IOF1H+NDEL+3 : 'CHI02' | NDEL VALUES
* ... |
* IOF1H+2*NDEL+2 : 'CHI--01' |
* IOF1H+2*NDEL+3 : 'CHI--02' | NBESP VALUES
* ... |
*
MAXH=9+NBESP+2*NDEL+NED+NL+3*NW
CALL EDIMAX(NBISO,ISONAM,MIX,IPRINT,NREGIO,NMERGE,MATCOD,IMERGE,
1 LSISO,LISO,MAXISO)
ALLOCATE(IGAR(NGROUP,3,NL),IHNISO(3,MAXISO),ISMIX(MAXISO),
1 ISTYP(MAXISO),ISTOD(MAXISO),ITYPRO(NL),MILVO(NMERGE),
2 ITYPS(NBISO),IMERGL(NBMIX))
ALLOCATE(MASK(NBISO))
ALLOCATE(GAR(NGROUP,MAXH),WGAR(NGROUP**2,NL),XSECT(0:NBMIX),
1 DIFHET(NMLEAK,NGROUP),WSTRD(NGCOND),SDEN(MAXISO),VOLISO(MAXISO),
2 TNISO(MAXISO),TMPXS(NGCOND),WDLA(NDEL),WORK(NGROUP))
ALLOCATE(WSCAT(NGCOND,NGCOND,NL),GAS(NGCOND,MAXH))
ALLOCATE(HMAKE(MAXH+NL))
ALLOCATE(JPIFI(MAXISO),YPIFI(MAXISO))
*----
* FOR AVERAGED NEUTRON VELOCITY
* V=SQRT(2*ENER/M)=SQRT(2/M)*SQRT(ENER)
* SQFMAS=SQRT(2/M) IN CM/S/SQRT(EV) FOR V IN CM/S AND E IN EV
* =SQRT(2*1.602189E-19(J/EV)* 1.0E4(CM2/M2) /1.67495E-27 (KG))
* =1383155.30602 CM/S/SQRT(EV)
*----
EVJ=XDRCST('eV','J')
NMASS=XDRCST('Neutron mass','kg')
SQFMAS=SQRT(2.0D4*EVJ/NMASS)
*
JPEDIT=C_NULL_PTR
IF(CURNAM.NE.' ') THEN
CALL LCMSIX(IPEDIT,CURNAM,1)
IF(MAXISO.GT.0) JPEDIT=LCMLID(IPEDIT,'ISOTOPESLIST',MAXISO)
ENDIF
*
DO 10 ISO=1,MAXISO
SDEN(ISO)=0.0
VOLISO(ISO)=0.0
JPIFI(ISO)=0
10 CONTINUE
IOF0H=8+NED+NL+3*NW
IOF1H=8+NED+NL+3*NW+NDEL
IOF2H=8+NED+NL+3*NW+2*NDEL
JJISO=0
JJNDFI=0
CONV=1.0E6 ! convert MeV to eV
DO 430 INM=1,NMERGE
*----
* PRELIMINARY CALCULATIONS FOR STRD CROSS SECTIONS
*----
LSTRD=ILEAKS.GE.1
IF(LSTRD) THEN
IF(ILEAKS.EQ.1) THEN
CALL LCMLEN(IPFLUX,'DIFFHET',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.0) THEN
CALL XABORT('EDIMIC: UNABLE TO RECOVER THE DIFFHET RECO'
1 //'RD IN THE FLUX OBJECT.')
ENDIF
CALL LCMGET(IPFLUX,'IMERGE-LEAK',IMERGL)
CALL LCMGET(IPFLUX,'DIFFHET',DIFHET)
ELSE IF(ILEAKS.EQ.3) THEN
CALL LCMGET(IPFLUX,'B2 HETE',B2T)
B2ALL=B2T(1)+B2T(2)+B2T(3)
IF(B2ALL.EQ.0.0) THEN
B2T(1)=1.0/3.0
B2T(2)=B2T(1)
B2T(3)=B2T(1)
ELSE
B2T(1)=B2T(1)/B2ALL
B2T(2)=B2T(2)/B2ALL
B2T(3)=B2T(3)/B2ALL
ENDIF
ENDIF
IGRFIN=0
XSECT(0)=0.0
DO 50 IGRCND=1,NGCOND
ZNU=0.0D0
ZDEN=0.0D0
ZFL1=0.0D0
ZFL2=0.0D0
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRCND)
CALL LCMSIX(IPLIB,'MACROLIB',1)
JPLIB=LCMGID(IPLIB,'GROUP')
JPFLUX=LCMGID(IPFLUX,'FLUX')
DO 40 IGR=IGRDEB,IGRFIN
KPLIB=LCMGIL(JPLIB,IGR)
CALL LCMGET(KPLIB,'NTOT0',XSECT(1))
IF((ILEAKS.EQ.2).OR.(ILEAKS.EQ.3)) THEN
CALL LCMLEL(JPFLUX,IGR,ILCMLN,ITYLCM)
IF(ILCMLN.EQ.0) CALL XABORT('EDIMIC: MISSING FLUX INFO.')
ALLOCATE(WORKF(ILCMLN))
CALL LCMGDL(JPFLUX,IGR,WORKF)
ENDIF
FL1=0.0
FL2=0.0
DO 20 IREGIO=1,NREGIO
MATNUM=MATCOD(IREGIO)
IF(IMERGE(IREGIO).EQ.INM) THEN
VOLREG=VOLUME(IREGIO)
IF(IADJ.EQ.0) THEN
FL1=FLUXES(IREGIO,IGR,1)
IF(NW.GE.1) FL2=FLUXES(IREGIO,IGR,2)
ELSE IF(IADJ.EQ.1) THEN
IF(ILEAKS.NE.1) CALL XABORT('EDIMIC: DIRECT-ADJOINT WEIG'
1 //'HTING NOT IMPLEMENTED.')
FL1=FLUXES(IREGIO,IGR,1)*AFLUXE(IREGIO,IGR,1)
IF(NW.GE.1) FL2=FLUXES(IREGIO,IGR,2)*
1 AFLUXE(IREGIO,IGR,2)
ENDIF
IF(NW.EQ.0) THEN
ZLEAK=0.0
IF(ILEAKS.EQ.1) THEN
IME=IMERGL(MATNUM)
IF(IME.GT.0) ZLEAK=DIFHET(IME,IGR)*FLUXES(IREGIO,IGR,1)
ELSE IF(ILEAKS.EQ.2) THEN
ZLEAK=WORKF(KEYFLX(IREGIO)+ILCMLN/2)
ELSE IF(ILEAKS.EQ.3) THEN
ZLEAK=B2T(1)*WORKF(KEYFLX(IREGIO)+NREGIO)+
1 B2T(2)*WORKF(KEYFLX(IREGIO)+2*NREGIO)+
2 B2T(3)*WORKF(KEYFLX(IREGIO)+3*NREGIO)
ENDIF
ZNU=ZNU+ZLEAK*VOLREG
ZDEN=ZDEN+XSECT(MATNUM)*FL1*VOLREG
ZFL1=ZFL1+FL1*VOLREG
ZFL2=ZFL2+FL1*VOLREG
ELSE
ZNU=ZNU+FL2*VOLREG
ZDEN=ZDEN+XSECT(MATNUM)*FL2*VOLREG
ZFL1=ZFL1+FL1*VOLREG
ZFL2=ZFL2+FL2*VOLREG
ENDIF
ENDIF
20 CONTINUE
IF((ILEAKS.EQ.2).OR.(ILEAKS.EQ.3)) DEALLOCATE(WORKF)
CALL LCMLEN(KPLIB,'SIGS01',LENGTH,ITYLCM)
IF((LENGTH.EQ.NBMIX).AND.(NL.GE.2)) THEN
CALL LCMGET(KPLIB,'SIGS01',XSECT(1))
DO 30 IREGIO=1,NREGIO
MATNUM=MATCOD(IREGIO)
IF(IMERGE(IREGIO).EQ.INM) THEN
VOLREG=VOLUME(IREGIO)
IF(IADJ.EQ.0) THEN
FL1=FLUXES(IREGIO,IGR,1)
IF(NW.GE.1) FL2=FLUXES(IREGIO,IGR,2)
ELSE IF(IADJ.EQ.1) THEN
FL1=FLUXES(IREGIO,IGR,1)*AFLUXE(IREGIO,IGR,1)
IF(NW.GE.1) FL2=FLUXES(IREGIO,IGR,2)*
1 AFLUXE(IREGIO,IGR,2)
ENDIF
IF(NW.EQ.0) THEN
ZDEN=ZDEN-XSECT(MATNUM)*FL1*VOLREG
ELSE
ZDEN=ZDEN-XSECT(MATNUM)*FL2*VOLREG
ENDIF
ENDIF
30 CONTINUE
ENDIF
40 CONTINUE
CALL LCMSIX(IPLIB,' ',2)
WSTRD(IGRCND)=REAL((ZFL1/(3.0*ZNU))*ZFL2/ZDEN)
50 CONTINUE
ENDIF
*
VOLMER=0.0D0
DO 60 IREGIO=1,NREGIO
IF(IMERGE(IREGIO).EQ.INM) VOLMER=VOLMER+VOLUME(IREGIO)
60 CONTINUE
MASK(:NBISO)=.FALSE.
DO 420 ISO=1,NBISO
ITYPS(ISO)=ITYPE(ISO)
IF(MASK(ISO).OR.(LSISO(ISO).EQ.0)) GO TO 420
DO 90 IREGIO=1,NREGIO
IF((IMERGE(IREGIO).EQ.INM).AND.(MATCOD(IREGIO).EQ.MIX(ISO)))
1 GO TO 100
90 CONTINUE
GO TO 420
100 LOGIC=.FALSE.
DDEN=0.0D0
DDENZ=0.0D0
*----
* MERGE/CONDENSE REACTIONS 'NWT0','NWT1','NWAT0','NWAT1','SIGS'//CM,
* 'SCAT'//CM, 'NTOT0', 'NUSIGF', 'CHI', 'CHIxx', 'STRD' AND HVECT
*----
DO 110 J=1,MAXH+NL
HMAKE(J)=' '
110 CONTINUE
DO 121 J=1,MAXH
DO 120 I=1,NGCOND
GAS(I,J)=0.0D0
120 CONTINUE
121 CONTINUE
DO 132 K=1,NL
DO 131 J=1,NGCOND
DO 130 I=1,NGCOND
WSCAT(I,J,K)=0.0D0
130 CONTINUE
131 CONTINUE
132 CONTINUE
DO 140 I=1,NDEL
WDLA(I)=0.0
140 CONTINUE
*----
* RECOVER THE RADIOACTIVE DECAY CONSTANTS OF DELAYED NEUTRON
* GROUPS FROM THE MACROLIB IF THEY EXIST
*----
LWD=.FALSE.
IF(CURNAM.NE.' ') THEN
CALL LCMSIX(IPEDIT,'MACROLIB',1)
CALL LCMLEN(IPEDIT,'LAMBDA-D',ILONG,ITYLCM)
LWD=(ILONG.EQ.NDEL).AND.(NDEL.GT.0)
IF(LWD) CALL LCMGET(IPEDIT,'LAMBDA-D',WDLA)
CALL LCMSIX(IPEDIT,' ',2)
ENDIF
*
HMAKE(1)='NWT0'
LAWR=.FALSE.
LDECA=.FALSE.
LMEVF=.FALSE.
LMEVG=.FALSE.
DO 145 IW=1,MIN(NW+1,10)
WRITE(HMAKE(IW),'(3HNWT,I1)') IW-1
IF(IADJ.EQ.1) WRITE(HMAKE(1+NW+IW),'(4HNWAT,I1)') IW-1
145 CONTINUE
ALLOCATE(PARM12(NW+1))
DO 260 IREGIO=1,NREGIO
MATNUM=MATCOD(IREGIO)
VOL=VOLUME(IREGIO)
IF(IMERGE(IREGIO).EQ.INM) THEN
IGRFIN=0
DO 154 IGRCND=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRCND)
DO 151 IGR=IGRDEB,IGRFIN
DO 150 IW=1,NW+1
GAS(IGRCND,IW)=GAS(IGRCND,IW)+DBLE(FLUXES(IREGIO,IGR,IW)*VOL)
IF(IADJ.EQ.1) GAS(IGRCND,1+NW+IW)=GAS(IGRCND,1+NW+IW)+
> DBLE(FLUXES(IREGIO,IGR,IW)*AFLUXE(IREGIO,IGR,IW)*VOL)
150 CONTINUE
151 CONTINUE
IF(IADJ.EQ.1) THEN
DO 153 IW=1,NW+1
GAS(IGRCND,1+NW+IW)=GAS(IGRCND,1+NW+IW)*VOLMER/GAS(IGRCND,IW)
153 CONTINUE
ENDIF
154 CONTINUE
LONE=.TRUE.
DO 250 JSO=ISO,NBISO
IF((ISONAM(1,ISO).EQ.ISONAM(1,JSO)).AND.
1 (ISONAM(2,ISO).EQ.ISONAM(2,JSO)).AND.
2 (MATNUM.EQ.MIX(JSO)).AND.(LSISO(JSO).NE.0)) THEN
IF(LISO) THEN
IF(ISONAM(3,ISO).EQ.ISONAM(3,JSO)) GOTO 155
GOTO 250
ENDIF
155 LOGIC=.TRUE.
ITYPS(ISO)=MAX(ITYPS(ISO),ITYPE(JSO))
DENVOL=MAX(DEN(JSO),1.0E-20)*VOL
DDEN=DDEN+DENVOL
DDENZ=DDENZ+DEN(JSO)*VOL
KPLIB=IPISO(JSO) ! set JSO-th isotope
IF(LONE) THEN
CALL LCMLEN(KPLIB,'AWR',LENGTH,ITYLCM)
LAWR=(LENGTH.EQ.1)
IF(LAWR) CALL LCMGET(KPLIB,'AWR',AWR)
CALL LCMLEN(KPLIB,'MEVF',LENGTH,ITYLCM)
IF(LENGTH.EQ.1) CALL LCMGET(KPLIB,'MEVF',EMEVF(ISO))
LMEVF=(LENGTH.EQ.1).OR.(EMEVF(ISO).GT.0.0)
CALL LCMLEN(KPLIB,'MEVG',LENGTH,ITYLCM)
IF(LENGTH.EQ.1) CALL LCMGET(KPLIB,'MEVG',EMEVG(ISO))
LMEVG=(LENGTH.EQ.1).OR.(EMEVG(ISO).GT.0.0)
CALL LCMLEN(KPLIB,'DECAY',LENGTH,ITYLCM)
IF(LENGTH.EQ.1) CALL LCMGET(KPLIB,'DECAY',DECAY(ISO))
LDECA=(LENGTH.EQ.1).OR.(DECAY(ISO).GT.0.0)
LONE=.FALSE.
ENDIF
DO 170 IL=0,NL-1
WRITE (CM,'(I2.2)') IL
CALL LCMLEN(KPLIB,'SIGS'//CM,LENGTH,ITYLCM)
IF(LENGTH.EQ.NGROUP) THEN
CALL LCMGET(KPLIB,'SIGS'//CM,GAR(1,4+3*NW+IL))
HMAKE(4+3*NW+IL)='SIGS'//CM
ENDIF
CALL LCMLEN(KPLIB,'NJJS'//CM,LENGTH,ITYLCM)
IF(LENGTH.EQ.NGROUP) THEN
CALL LCMGET(KPLIB,'NJJS'//CM,IGAR(1,1,1+IL))
CALL LCMGET(KPLIB,'IJJS'//CM,IGAR(1,2,1+IL))
CALL LCMGET(KPLIB,'SCAT'//CM,WGAR(1,1+IL))
HMAKE(MAXH+1+IL)='SCAT'//CM
IPO=0
DO 160 IGR=1,NGROUP
IGAR(IGR,3,1+IL)=IPO+1
IPO=IPO+IGAR(IGR,1,1+IL)
160 CONTINUE
ENDIF
170 CONTINUE
DO IW=0,MIN(NW,9)
WRITE(HMAKE(3+2*NW+IW),'(4HNTOT,I1)') IW
CALL LCMLEN(KPLIB,HMAKE(3+2*NW+IW),ILONG,ITYLCM)
IF(ILONG.NE.0) THEN
CALL LCMGET(KPLIB,HMAKE(3+2*NW+IW),GAR(1,3+2*NW+IW))
ELSE
CALL LCMGET(KPLIB,'NTOT0',GAR(1,3+2*NW+IW))
ENDIF
ENDDO
CALL LCMLEN(KPLIB,'NUSIGF',LENGTH,ITYLCM)
IF(LENGTH.EQ.NGROUP) THEN
CALL LCMGET(KPLIB,'NUSIGF',GAR(1,4+NL+3*NW))
HMAKE(4+NL+3*NW)='NUSIGF'
ENDIF
CALL LCMLEN(KPLIB,'CHI',LENGTH,ITYLCM)
IF(LENGTH.EQ.NGROUP) THEN
CALL LCMGET(KPLIB,'CHI',GAR(1,1+IOF1H))
HMAKE(1+IOF1H)='CHI'
ENDIF
IF(NDEL.GT.0) THEN
WRITE(TEXT8,'(6HNUSIGF,I2.2)') NDEL
CALL LCMLEN(KPLIB,TEXT8,LENGTH,ITYLCM)
IF(LENGTH.EQ.NGROUP) THEN
DO 180 IDEL=1,NDEL
WRITE(TEXT8,'(6HNUSIGF,I2.2)') IDEL
CALL LCMGET(KPLIB,TEXT8,GAR(1,IOF0H+IDEL))
HMAKE(IOF0H+IDEL)=TEXT8
180 CONTINUE
ENDIF
WRITE(TEXT8,'(3HCHI,I2.2)') NDEL
CALL LCMLEN(KPLIB,TEXT8,LENGTH,ITYLCM)
IF(LENGTH.EQ.NGROUP) THEN
DO 184 IDEL=1,NDEL
WRITE(TEXT8,'(3HCHI,I2.2)') IDEL
CALL LCMGET(KPLIB,TEXT8,GAR(1,1+IOF1H+IDEL))
HMAKE(1+IOF1H+IDEL)=TEXT8
184 CONTINUE
ENDIF
ENDIF
DO 185 ISP=1,NBESP
WRITE(TEXT8,'(5HCHI--,I2.2)') ISP
CALL LCMLEN(KPLIB,TEXT8,LENGTH,ITYLCM)
IF(LENGTH.EQ.NGROUP) THEN
CALL LCMGET(KPLIB,TEXT8,GAR(1,1+IOF2H+ISP))
HMAKE(1+IOF2H+ISP)=TEXT8
ENDIF
185 CONTINUE
IF(ITRANC.NE.0) THEN
CALL LCMGET(KPLIB,'TRANC',GAR(1,7+NED+NL+3*NW))
HMAKE(7+NED+NL+3*NW)='TRANC'
ENDIF
DO 186 IGR=1,NGROUP
GAR(IGR,5+NED+NL+3*NW)=0.0
186 CONTINUE
CALL LCMLEN(KPLIB,'H-FACTOR',LENGTH,ITYLCM)
IF(LENGTH.GT.0) THEN
CALL LCMGET(KPLIB,'H-FACTOR',GAR(1,5+NED+NL+3*NW))
HMAKE(5+NED+NL+3*NW)='H-FACTOR'
ELSE
IF(LMEVF) THEN
CALL LCMGET(KPLIB,'NFTOT',WORK)
HMAKE(5+NED+NL+3*NW)='H-FACTOR'
DO 190 IGR=1,NGROUP
GAR(IGR,5+NED+NL+3*NW)=GAR(IGR,5+NED+NL+3*NW)+
1 WORK(IGR)*EMEVF(ISO)*REAL(CONV)
190 CONTINUE
ENDIF
IF(LMEVG) THEN
CALL LCMGET(KPLIB,'NG',WORK)
HMAKE(5+NED+NL+3*NW)='H-FACTOR'
DO 195 IGR=1,NGROUP
GAR(IGR,5+NED+NL+3*NW)=GAR(IGR,5+NED+NL+3*NW)+
1 WORK(IGR)*EMEVG(ISO)*REAL(CONV)
195 CONTINUE
ENDIF
ENDIF
DO 200 IED=1,NED
IF(HVECT(IED).EQ.'H-FACTOR') GO TO 200
CALL LCMLEN(KPLIB,HVECT(IED),LENGTH,ITYLCM)
IF((LENGTH.GT.0).AND.(HVECT(IED).NE.'TRANC')) THEN
CALL LCMGET(KPLIB,HVECT(IED),GAR(1,4+NL+3*NW+IED))
HMAKE(4+NL+3*NW+IED)=HVECT(IED)
ENDIF
200 CONTINUE
CALL LCMLEN(KPLIB,'OVERV',LENGTH,ITYLCM)
IF(LENGTH.GT.0) THEN
CALL LCMGET(KPLIB,'OVERV',GAR(1,6+NED+NL+3*NW))
ELSE
ALLOCATE(ENR(NGROUP+1))
CALL LCMGET(IPLIB,'ENERGY',ENR)
IF(ENR(NGROUP+1).EQ.0.0) ENR(NGROUP+1)=1.0E-5
DO 205 IGR=1,NGROUP
ENEAVG=SQRT(ENR(IGR)*ENR(IGR+1))
GAR(IGR,6+NED+NL+3*NW)=1.0/(REAL(SQFMAS)*SQRT(ENEAVG))
205 CONTINUE
DEALLOCATE(ENR)
ENDIF
HMAKE(6+NED+NL+3*NW)='OVERV'
*
IGRFIN=0
DO 242 IGRCND=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRCND)
DO 241 IGR=IGRDEB,IGRFIN
PARM0=FLUXES(IREGIO,IGR,1)*DENVOL
PARM3=0.0D0
PARM4=0.0D0
PARM12(:NW+1)=0.0D0
IF(IADJ.EQ.0) THEN
DO 206 IW=1,NW+1
PARM12(IW)=FLUXES(IREGIO,IGR,IW)*DENVOL
206 CONTINUE
PARM3=0.0D0
DO 210 JREGIO=1,NREGIO
IF(IMERGE(JREGIO).EQ.INM) THEN
PARM3=PARM3+FLUXES(JREGIO,IGR,1)*VOLUME(JREGIO)
ENDIF
210 CONTINUE
PARM3=DENVOL*PARM3/VOLMER
PARM4=DENVOL
ELSE IF(IADJ.EQ.1) THEN
DO 211 IW=1,NW+1
PARM12(IW)=FLUXES(IREGIO,IGR,IW)*AFLUXE(IREGIO,IGR,IW)*
> DENVOL
211 CONTINUE
PARM3=0.0D0
DO 212 JREGIO=1,NREGIO
IF(IMERGE(JREGIO).EQ.INM) THEN
PARM3=PARM3+FLUXES(JREGIO,IGR,1)*AFLUXE(JREGIO,IGR,1)*
> VOLUME(JREGIO)
ENDIF
212 CONTINUE
PARM3=DENVOL*PARM3/VOLMER
PARM4=AFLUXE(IREGIO,IGR,1)*DENVOL
ENDIF
DO 215 J=3+2*NW,MAXH
IF(HMAKE(J).NE.' ') THEN
IF(J.EQ.6+NED+NL+3*NW) THEN
GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM3 ! OVERV
ELSE IF((J.EQ.4+NL+3*NW).OR.
> ((J.GE.1+IOF0H).AND.(J.LE.NDEL+IOF0H))) THEN
GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM0 ! nu*fission cross sections
ELSE IF((J.GE.1+IOF1H).AND.(J.LE.MAXH)) THEN
GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM4 ! fission spectrum
ELSE IF((J.GE.4+2*NW).AND.(J.LE.3+3*NW)) THEN
IW=J-2-2*NW ! NTOT1 cross sections
GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM12(IW)
ELSE IF((J.GE.5+3*NW).AND.(J.LE.3+NL+3*NW)) THEN
IW=MIN(J-3-3*NW,NW+1) ! SOGS01 cross sections
GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM12(IW)
ELSE IF(J.EQ.8+NED+NL+3*NW) THEN
GO TO 215 ! STRD case
ELSE IF(J.LE.IOF1H) THEN
GAS(IGRCND,J)=GAS(IGRCND,J)+DBLE(GAR(IGR,J))*PARM12(1) ! P0 cross sections
ENDIF
ENDIF
215 CONTINUE
DO 240 IL=0,NL-1
IF(HMAKE(MAXH+1+IL).NE.' ') THEN
* IGRCND IS THE SECONDARY GROUP.
IW=MIN(IL,NW)+1
NGSCAT=IGAR(IGR,1,1+IL)
IGSCAT=IGAR(IGR,2,1+IL)
JGRFIN=0
DO 230 JGRCND=1,NGCOND
JGRDEB=JGRFIN+1
JGRFIN=IGCOND(JGRCND)
J2=MIN(JGRFIN,IGSCAT)
J1=MAX(JGRDEB,IGSCAT-NGSCAT+1)
TMP=0.0D0
IPO=IGAR(IGR,3,1+IL)+IGSCAT-J2
DO 220 JGR=J2,J1,-1
IF(IADJ.EQ.0) THEN
TMP=TMP+WGAR(IPO,1+IL)*FLUXES(IREGIO,JGR,IW)*DENVOL
ELSE IF(IADJ.EQ.1) THEN
TMP=TMP+WGAR(IPO,1+IL)*AFLUXE(IREGIO,IGR,IW)*
> FLUXES(IREGIO,JGR,IW)*DENVOL
ENDIF
IPO=IPO+1
220 CONTINUE
WSCAT(IGRCND,JGRCND,1+IL)=WSCAT(IGRCND,JGRCND,1+IL)+TMP
230 CONTINUE
ENDIF
240 CONTINUE
241 CONTINUE
242 CONTINUE
MASK(JSO)=.TRUE.
GO TO 250
ENDIF
250 CONTINUE
ENDIF
260 CONTINUE
DEALLOCATE(PARM12)
IF(LOGIC) THEN
JJISO=JJISO+1
IF(JJISO.GT.MAXISO) CALL XABORT('EDIMIC: INSUFFICIENT ALLOCAT'
1 //'ED SPACE FOR ISMIX, ISTYP, SDEN, VOLISO AND IHNISO.')
IF(LISO) THEN
WRITE(HNEW,'(3A4)') (ISONAM(I0,ISO),I0=1,3)
ELSE
WRITE(HNEW,'(2A4,I4.4)') (ISONAM(I0,ISO),I0=1,2),INM
ENDIF
READ(HNEW,'(3A4)') (IHNISO(I0,JJISO),I0=1,3)
ISMIX(JJISO)=INM
ISTYP(JJISO)=ISO
SDEN(JJISO)=REAL(DDENZ/VOLMER)
VOLISO(JJISO)=REAL(VOLMER)
TNISO(JJISO)=TN(ISO)
IF(IPRINT.GT.1) THEN
WRITE (6,600) HNEW,JJISO
WRITE(6,'(/17H NUMBER DENSITY =,1P,E12.4)') DDEN/VOLMER
ENDIF
IF(NDFI.GT.0) THEN
IFI=FIPI(ISO,INM)
IF(IFI.GT.0) THEN
JJNDFI=JJNDFI+1
IF(JJNDFI.GT.MAXISO) CALL XABORT('EDIMIC: JPIFI OVERFLOW.')
JPIFI(JJNDFI)=JJISO
IF(IPRINT.GT.1) WRITE(6,'(24H FISSILE ISOTOPE INDEX =,I5)')
1 JJNDFI
ENDIF
ENDIF
*
* UP-SCATTERING CORRECTIONS.
IF(ILUPS.EQ.1) THEN
DO 282 JGR=2,NGCOND
DO 281 IGR=1,JGR-1 ! IGR < JGR
GAS(3+2*NW,IGR)=GAS(3+2*NW,IGR)-WSCAT(IGR,JGR,1)
GAS(3+2*NW,JGR)=GAS(3+2*NW,JGR)-WSCAT(IGR,JGR,1)
IF((NW.GE.1).AND.(NL.GE.1)) THEN
GAS(4+2*NW,IGR)=GAS(4+2*NW,IGR)-WSCAT(IGR,JGR,2)
GAS(4+2*NW,JGR)=GAS(4+2*NW,JGR)-WSCAT(IGR,JGR,2)
ENDIF
DO 280 IL=0,NL-1
GAS(4+3*NW+IL,IGR)=GAS(4+3*NW+IL,IGR)-WSCAT(IGR,JGR,1+IL)
GAS(4+3*NW+IL,JGR)=GAS(4+3*NW+IL,JGR)-WSCAT(IGR,JGR,1+IL)
WSCAT(JGR,IGR,1+IL)=WSCAT(JGR,IGR,1+IL)-WSCAT(IGR,JGR,1+IL)
WSCAT(IGR,JGR,1+IL)=0.0D0
280 CONTINUE
281 CONTINUE
282 CONTINUE
ENDIF
*
ALLOCATE(PHIAV(NW+1),AHIAV(NW+1))
DO 360 IGRCND=1,NGCOND
*
* DIVIDE MATRIX XS BY INTEGRATED FLUX
DO 341 IL=0,NL-1
IW=MIN(IL,NW)+1
PHIAV(IW)=GAS(IGRCND,IW)/VOLMER
TMP=GAS(IGRCND,4+3*NW+IL)
DO 330 JGRCND=1,NGCOND
IF(JGRCND.NE.IGRCND) TMP=TMP-WSCAT(JGRCND,IGRCND,1+IL)
330 CONTINUE
QEN=REAL(MAX(ABS(TMP),ABS(WSCAT(IGRCND,IGRCND,1+IL))))
IF((QEN.GT.0.0).AND.(IADJ.EQ.0)) THEN
ERR=ABS(REAL(TMP-WSCAT(IGRCND,IGRCND,1+IL)))/QEN
IF(ERR.GT.1.0E-3) WRITE(6,620) IGRCND,IL,100.0*ERR,HNEW
WSCAT(IGRCND,IGRCND,1+IL)=TMP
ENDIF
DO 340 JGRCND=1,NGCOND
AHIAV(IW)=1.0D0
IF(IADJ.EQ.1) AHIAV(IW)=GAS(JGRCND,1+NW+IW)/VOLMER
IF(PHIAV(IW).GT.0.0D0) THEN
WSCAT(JGRCND,IGRCND,1+IL)=WSCAT(JGRCND,IGRCND,1+IL)
1 /(DDEN*AHIAV(IW)*PHIAV(IW))
ELSE
WSCAT(JGRCND,IGRCND,1+IL)=0.0D0
ENDIF
340 CONTINUE
341 CONTINUE
*
* DIVIDE VECTORIAL XS BY INTEGRATED FLUX
DO 345 IW=1,NW+1
PHIAV(IW)=GAS(IGRCND,IW)/VOLMER
AHIAV(IW)=1.0
IF(IADJ.EQ.1) AHIAV(IW)=GAS(IGRCND,1+NW+IW)/VOLMER
345 CONTINUE
DO 350 J=3+2*NW,MAXH
IF((J.EQ.4+NL+3*NW).OR.
> ((J.GE.1+IOF0H).AND.(J.LE.NDEL+IOF0H))) THEN
IF(PHIAV(1).GT.0.0D0) THEN
GAS(IGRCND,J)=GAS(IGRCND,J)/(DDEN*PHIAV(1)) ! nu*fission cross sections
ELSE
GAS(IGRCND,J)=0.0D0
ENDIF
ELSE IF((J.GE.1+IOF1H).AND.(J.LE.MAXH)) THEN
GAS(IGRCND,J)=GAS(IGRCND,J)/(DDEN*AHIAV(1)) ! fission spectrum
ELSE IF((J.GE.4+2*NW).AND.(J.LE.3+3*NW)) THEN
IW=J-2-2*NW
IF(PHIAV(IW).NE.0.0) THEN
GAS(IGRCND,J)=GAS(IGRCND,J)/(DDEN*AHIAV(IW)*PHIAV(IW)) ! NTOT1 cross sections
ELSE
GAS(IGRCND,J)=0.0D0
ENDIF
ELSE IF((J.GE.5+3*NW).AND.(J.LE.3+NL+3*NW)) THEN
IW=MIN(J-3-3*NW,NW+1)
IF(PHIAV(IW).NE.0.0) THEN
GAS(IGRCND,J)=GAS(IGRCND,J)/(DDEN*AHIAV(IW)*PHIAV(IW)) ! SIGS01 cross sections
ELSE
GAS(IGRCND,J)=0.0D0
ENDIF
ELSE IF(J.EQ.8+NED+NL+3*NW) THEN
GO TO 350 ! STRD case
ELSE IF(PHIAV(1).GT.0.0D0) THEN
GAS(IGRCND,J)=GAS(IGRCND,J)/(DDEN*AHIAV(1)*PHIAV(1)) ! P0 cross sections
ELSE
GAS(IGRCND,J)=0.0D0
ENDIF
350 CONTINUE
*
IF(LSTRD) THEN
J=8+NED+NL+3*NW
HMAKE(J)='STRD'
IF(NW.GE.1) THEN
GAS(IGRCND,J)=GAS(IGRCND,4+2*NW)
ELSE
GAS(IGRCND,J)=GAS(IGRCND,3+2*NW)
ENDIF
IF((HMAKE(5+3*NW).NE.' ').AND.(NL.GE.2)) THEN
GAS(IGRCND,J)=GAS(IGRCND,J)-GAS(IGRCND,5+3*NW)
ENDIF
GAS(IGRCND,J)=GAS(IGRCND,J)*WSTRD(IGRCND)
ENDIF
360 CONTINUE
DEALLOCATE(AHIAV,PHIAV)
*
* DIVIDE INTEGRATED FLUXES BY VOLUMES
DO 366 IW=1,NW+1
DO 365 IGRCND=1,NGCOND
GAS(IGRCND,IW)=GAS(IGRCND,IW)/VOLMER
IF(IADJ.EQ.1) GAS(IGRCND,NW+IW)=GAS(IGRCND,NW+IW)/VOLMER
365 CONTINUE
366 CONTINUE
*
IF(CURNAM.NE.' ') THEN
IF(NOUT.GT.0) THEN
DO J=1,MAXH+NL
DO IOUT=1,NOUT
IF(HMAKE(J).EQ.HVOUT(IOUT)) GO TO 370
ENDDO
HMAKE(J)=' '
370 CONTINUE
ENDDO
ENDIF
KPEDIT=LCMDIL(JPEDIT,JJISO) ! set JJISO-th isotope
CALL LCMPTC(KPEDIT,'ALIAS',12,HNEW)
IF(LAWR) CALL LCMPUT(KPEDIT,'AWR',1,2,AWR)
IF(LMEVF) CALL LCMPUT(KPEDIT,'MEVF',1,2,EMEVF(ISO))
IF(LMEVG) CALL LCMPUT(KPEDIT,'MEVG',1,2,EMEVG(ISO))
IF(LDECA) CALL LCMPUT(KPEDIT,'DECAY',1,2,DECAY(ISO))
DO 380 J=1,MAXH
IF(HMAKE(J).NE.' ') THEN
DO 375 IGCD=1,NGCOND
TMPXS(IGCD)=REAL(GAS(IGCD,J))
375 CONTINUE
CALL LCMPUT(KPEDIT,HMAKE(J),NGCOND,2,TMPXS)
ENDIF
380 CONTINUE
DO 390 IL=1,NL
ITYPRO(IL)=0
IF(HMAKE(MAXH+IL).NE.' ') ITYPRO(IL)=1
390 CONTINUE
IF(ITYPRO(1).EQ.0) GO TO 405
ALLOCATE(GA1(NL*NGCOND),GA2(NL*NGCOND*NGCOND))
IOF1=0
IOF2=0
DO 402 IL=1,NL
DO 401 IG2=1,NGCOND
IOF1=IOF1+1
GA1(IOF1)=REAL(GAS(IG2,3+3*NW+IL))
DO 400 IG1=1,NGCOND
IOF2=IOF2+1
GA2(IOF2)=REAL(WSCAT(IG1,IG2,IL))
400 CONTINUE
401 CONTINUE
402 CONTINUE
CALL XDRLGS(KPEDIT,1,IPRINT,0,NL-1,1,NGCOND,GA1,GA2,ITYPRO)
DEALLOCATE(GA2,GA1)
405 IF(NDEL.NE.0) THEN
IF(HMAKE(IOF0H+1).NE.' ') THEN
CALL LCMPUT(KPEDIT,'LAMBDA-D',NDEL,2,WDLA)
ENDIF
ENDIF
ENDIF
IF(IPRINT.GT.3) THEN
DO 410 J=1,MAXH
IF(HMAKE(J).NE.' ') THEN
WRITE (6,610) HMAKE(J),(GAS(I,J),I=1,NGCOND)
ENDIF
410 CONTINUE
WRITE (6,610) 'SIGA ',(GAS(I,3+2*NW)-GAS(I,4+3*NW),
> I=1,NGCOND)
WRITE (6,610) 'SIGW00 ',(WSCAT(I,I,1),I=1,NGCOND)
IF(NL.GT.1) THEN
WRITE (6,610) 'SIGW01 ',(WSCAT(I,I,2),I=1,NGCOND)
ENDIF
IF(LWD) WRITE (6,610) 'LAMBDA-D',(WDLA(I),I=1,NDEL)
ENDIF
IF(IPRINT.GT.4) CALL LCMLIB(KPEDIT)
ENDIF
420 CONTINUE
430 CONTINUE
IF(CURNAM.NE.' ') CALL LCMSIX(IPEDIT,' ',2)
*----
* VALIDATE FISSION YIELD DATA
*----
IF((NDFI.GT.0).AND.(JJISO.GT.0)) THEN
DO 470 INM=1,NMERGE
DO 460 ISO=1,NBISO
IF((DEN(ISO).EQ.0.0).OR.(IEVOL(ISO).EQ.1)) GO TO 460
IF(ITYPE(ISO).EQ.2) THEN
IF(FIPI(ISO,INM).NE.0) THEN
! microlib isotope ISO is a fissile isotope
DO 450 J=1,JJNDFI
JJSO=JPIFI(J) ! condensed isotope JJSO is a fissile isotope
IF(JJSO.EQ.0) GO TO 450
JSO=ISTYP(JJSO)
IF((ISMIX(JJSO).EQ.INM).AND.(ISONAM(1,ISO).EQ.ISONAM(1,JSO))
1 .AND.(ISONAM(2,ISO).EQ.ISONAM(2,JSO))) GO TO 460
450 CONTINUE
WRITE(HNAMIS,'(3A4)') (ISONAM(I0,ISO),I0=1,3)
WRITE(HSMG,'(29HEDIMIC: THE FISSILE ISOTOPE '',A8,
1 34H'' MUST BE SELECTED IN MICR OPTION.)') HNAMIS(:8)
CALL XABORT(HSMG)
ENDIF
ENDIF
460 CONTINUE
470 CONTINUE
ENDIF
*
IF(CURNAM.NE.' ') THEN
CALL LCMSIX(IPEDIT,CURNAM,1)
TEXT12='L_LIBRARY'
CALL LCMPTC(IPEDIT,'SIGNATURE',12,TEXT12)
*----
* FIND THE MAXIMUM NUMBER OF ISOTOPES PER MIXTURE
*----
MAXISM=0
DO 490 INM=1,NMERGE
MAX0=0
DO 480 IISO=1,JJISO
IF(ISMIX(IISO).EQ.INM) MAX0=MAX0+1
480 CONTINUE
MAXISM=MAX(MAXISM,MAX0)
490 CONTINUE
*----
* SAVE FISSION YIELD DATA
*----
IF(NDFI.GT.0) THEN
DO 520 INM=1,NMERGE
DO 510 IISO=1,JJISO
IF(ISMIX(IISO).EQ.INM) THEN
ISO=ISTYP(IISO)
ISOFP=FIFP(ISO,INM)
IF(ISOFP.GT.0) THEN
! condensed isotope IISO is a fission fragment
IF(ISOFP.GT.NDFP) CALL XABORT('EDIMIC: YIELD OVERFLOW.')
KPEDIT=LCMGIL(JPEDIT,IISO) ! set IISO-th isotope
YPIFI(:JJNDFI)=0.0
DO 500 J=1,JJNDFI
JJSO=JPIFI(J) ! condensed isotope JJSO is fissile
JSO=ISTYP(JJSO)
IFI=FIPI(JSO,INM)
IF(IFI.GT.0) YPIFI(J)=PYIELD(IFI,ISOFP,INM)
500 CONTINUE
CALL LCMPUT(KPEDIT,'YIELD',NGCOND+1,2,YIELD(1,ISOFP,INM))
IF(JJNDFI.GT.0) THEN
CALL LCMPUT(KPEDIT,'PYIELD',JJNDFI,2,YPIFI)
CALL LCMPUT(KPEDIT,'PIFI',JJNDFI,1,JPIFI)
ENDIF
ENDIF
ENDIF
510 CONTINUE
520 CONTINUE
ENDIF
*----
* SAVE EDITION MICROLIB
*----
IF(NED.GT.0) CALL LCMPTC(IPEDIT,'ADDXSNAME-P0',8,NED,HVECT)
NCOMB=0
IF(JJISO.GT.0) THEN
CALL LCMPUT(IPEDIT,'ISOTOPESUSED',3*JJISO,3,IHNISO)
CALL LCMPUT(IPEDIT,'ISOTOPESMIX',JJISO,1,ISMIX)
CALL LCMPUT(IPEDIT,'ISOTOPESVOL',JJISO,2,VOLISO)
CALL LCMPUT(IPEDIT,'ISOTOPESTEMP',JJISO,2,TNISO)
CALL LCMPUT(IPEDIT,'ISOTOPESDENS',JJISO,2,SDEN)
DO 550 IISO=1,JJISO
DO 530 I0=1,3
IHNISO(I0,IISO)=ISONRF(I0,ISTYP(IISO))
530 CONTINUE
ISTOD(IISO)=IEVOL(ISTYP(IISO))
ISTYP(IISO)=ITYPS(ISTYP(IISO))
IF((ISTOD(IISO).NE.1).AND.(ISTYP(IISO).GE.1)) THEN
INM=ISMIX(IISO)
IF(INM.EQ.0) GO TO 550
DO 540 J=1,NCOMB
IF(INM.EQ.MILVO(J)) GO TO 550
540 CONTINUE
NCOMB=NCOMB+1
IF(NCOMB.GT.NMERGE) CALL XABORT('EDIMIC: MILVO OVERFLOW.')
MILVO(NCOMB)=INM
ENDIF
550 CONTINUE
CALL LCMPUT(IPEDIT,'ISOTOPERNAME',3*JJISO,3,IHNISO)
CALL LCMPUT(IPEDIT,'ISOTOPESTODO',JJISO,1,ISTOD)
CALL LCMPUT(IPEDIT,'ISOTOPESTYPE',JJISO,1,ISTYP)
ENDIF
ALLOCATE(VOLM(NMERGE))
VOLM(:NMERGE)=0.0
DO 560 IREGIO=1,NREGIO
INM=IMERGE(IREGIO)
IF(INM.GT.0) VOLM(INM)=VOLM(INM)+VOLUME(IREGIO)
560 CONTINUE
CALL LCMPUT(IPEDIT,'MIXTURESVOL',NMERGE,2,VOLM)
CALL LCMPUT(IPEDIT,'K-EFFECTIVE',1,2,EIGENK)
CALL LCMPUT(IPEDIT,'K-INFINITY',1,2,EIGINF)
IF(ILEAKS.GT.0) CALL LCMPUT(IPEDIT,'B2 B1HOM',1,2,B2(4))
DEALLOCATE(VOLM)
ALLOCATE(ENR(NGROUP+1))
CALL LCMGET(IPLIB,'ENERGY',ENR)
DO 570 IGRCND=1,NGCOND
ENR(IGRCND+1)=ENR(IGCOND(IGRCND)+1)
570 CONTINUE
IF(ENR(NGCOND+1).EQ.0.0) ENR(NGCOND+1)=1.0E-5
CALL LCMPUT(IPEDIT,'ENERGY',NGCOND+1,2,ENR)
DO 580 IGRCND=1,NGCOND
ENR(IGRCND)=LOG(ENR(IGRCND)/ENR(IGRCND+1))
580 CONTINUE
CALL LCMPUT(IPEDIT,'DELTAU',NGCOND,2,ENR)
NBESP2=0
IF(NBESP.GT.0) THEN
IF(NBESP.GT.MAXESP) CALL XABORT('EDIMIC: MAXESP OVERFLOW.')
CALL LCMGET(IPLIB,'CHI-ENERGY',EESP)
EESP2(1)=ENR(1)
IESP2(1)=0
IIG=0
DO IG=1,NGCOND+1
IF(IIG.GT.NBESP) CALL XABORT('EDIMIC: BAD LIMITS FOR ENERG'
1 //'Y-DEPENDENT FISSION SPECTRA.')
IF(EESP(IIG+1).GE.0.999*ENR(IG)) THEN
IIG=IIG+1
EESP2(IIG)=ENR(IG)
IESP2(IIG)=IG-1
ENDIF
ENDDO
NBESP2=IIG-1
IF(IPRINT.GT.3) THEN
WRITE(6,'(/42H EDIMIC: ENERGY-DEPENDENT FISSION SPECTRA:)')
WRITE(6,'(5X,5I12)') IESP2(:NBESP2+1)
WRITE(6,'(5X,1P,5E12.4)') EESP2(:NBESP2+1)
ENDIF
CALL LCMPUT(IPEDIT,'CHI-ENERGY',NBESP2+1,2,EESP2)
CALL LCMPUT(IPEDIT,'CHI-LIMITS',NBESP2+1,1,IESP2)
ENDIF
DEALLOCATE(ENR)
IPAR(:NSTATE)=0
IPAR(1)=NMERGE
IPAR(2)=JJISO
IPAR(3)=NGCOND
IPAR(4)=NL
IPAR(5)=ITRANC
IF(ITRANC.NE.0) IPAR(5)=2
IPAR(7)=1
IPAR(11)=NDEPL
IPAR(12)=NCOMB
IPAR(13)=NED
IPAR(14)=NMERGE
IPAR(16)=NBESP2
IPAR(18)=1
IPAR(19)=NDEL
IPAR(20)=JJNDFI
IPAR(22)=MAXISM
IPAR(25)=NW
CALL LCMPUT(IPEDIT,'STATE-VECTOR',NSTATE,1,IPAR)
IF(IPRINT.GT.3) THEN
WRITE(6,630) IPRINT,(IPAR(I),I=1,13)
WRITE(6,640) (IPAR(I),I=14,25)
ENDIF
CALL LCMSIX(IPEDIT,' ',2)
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(YPIFI,JPIFI)
DEALLOCATE(HMAKE)
DEALLOCATE(GAS,WSCAT)
DEALLOCATE(WORK,WDLA,TMPXS,TNISO,VOLISO,SDEN,WSTRD,DIFHET,XSECT,
1 WGAR,GAR)
DEALLOCATE(MASK)
DEALLOCATE(IMERGL,ITYPS,MILVO,ITYPRO,ISTOD,ISTYP,ISMIX,IHNISO,
1 IGAR)
RETURN
*
600 FORMAT (//44H CROSS SECTION OF MERGED/CONDENSED ISOTOPE ',A12,
1 7H' (ISO=,I8,2H):)
610 FORMAT (/11H REACTION ',A12,2H':/(1X,1P,10E12.4))
620 FORMAT(/53H EDIMIC: *** WARNING *** NORMALIZATION OF THE WITHIN-,
1 34HGROUP SCATTERING TRANSFER IN GROUP,I4,10H AND ORDER,I3,3H BY,
2 F6.2,9H% ISOTOPE,2H=',A12,2H'.)
630 FORMAT(/8H OPTIONS/8H -------/
1 7H IPRINT,I6,30H (0=NO PRINT/1=SHORT/2=MORE)/
2 7H MAXMIX,I6,31H (MAXIMUM NUMBER OF MIXTURES)/
3 7H NBISO ,I6,36H (NUMBER OF ISOTOPES OR MATERIALS)/
4 7H NGRP ,I6,28H (NUMBER OF ENERGY GROUPS)/
5 7H NL ,I6,30H (NUMBER OF LEGENDRE ORDERS)/
6 7H ITRANC,I6,45H (0=NO TRANSPORT CORRECTION/1=APOLLO TYPE/2,
7 57H=RECOVER FROM LIBRARY/3=WIMS-D TYPE/4=LEAKAGE CORRECTION)/
8 7H IPROB ,I6,23H (0=DIRECT/1=ADJOINT)/
9 7H ITIME ,I6,28H (1=STEADY-STATE/2=PROMPT)/
1 7H NLIB ,I6,32H (NUMBER OF SETS OF LIBRARIES)/
2 7H NGF ,I6,48H (NUMBER OF FAST GROUP WITHOUT SELF-SHIELDING)/
3 7H IGRMAX,I6,41H (LAST GROUP INDEX WITH SELF-SHIELDING)/
4 7H NDEPL ,I6,33H (NUMBER OF DEPLETING ISOTOPES)/
5 7H NCOMB ,I6,33H (NUMBER OF DEPLETING MIXTURES)/
6 7H NEDMAC,I6,34H (NUMBER OF CROSS SECTION EDITS))
640 FORMAT(7H NBMIX ,I6,23H (NUMBER OF MIXTURES)/
1 7H NRES ,I6,40H (NUMBER OF SETS OF RESONANT MIXTURES)/
2 7H NBESP ,I6,47H (NUMBER OF ENERGY-DEPENDENT FISSION SPECTRA)/
3 7H IPROC ,I6,48H (-1=SKIP LIBRARY PROCESSING/0=DILUTION INTERP,
4 48HOLATION/1=USE PHYSICAL TABLES/2=BUILD A DRAGLIB/,
5 55H3=COMPUTE CALENDF TABLES/4=COMPUTE SLOWING-DOWN TABLES)/
6 7H IMAC ,I6,45H (0=DO NOT/1=DO BUILD AN EMBEDDED MACROLIB)/
7 7H NDEL ,I6,31H (NUMBER OF PRECURSOR GROUPS)/
8 7H NFISS ,I6,43H (NUMBER OF FISSILE ISOTOPES IN MICROLIB)/
9 7H ISOADD,I6,37H (0=COMPLETE BURNUP CHAIN/1=DO NOT)/
1 7H MAXISM,I6,40H (MAX. NUMBER OF ISOTOPES PER MIXTURE)/
2 7H IPRECI,I6,34H (CALENDF ACCURACY FLAG:1/2/3/4)/
3 7H IADF ,I6,19H (ADF FLAG:0/1/2)/
4 7H NW ,I6,47H (=0: FLUX WEIGHTING FOR P1 INFO; =1: CURRENT,
5 23H WEIGHTING FOR P1 INFO))
END
|