1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
!
!-----------------------------------------------------------------------
!
!Purpose:
! Perform an homogenization based on a surfacic file.
!
!Copyright:
! Copyright (C) 2017 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!-----------------------------------------------------------------------
!
MODULE EDIG2S_MOD
USE PRECISION_AND_KINDS, ONLY : PDB
CONTAINS
!
FUNCTION EDIBAR(NODE,CX,CY) RESULT(TLAMB)
!----
! Compute the barycentric coordinates of point (CX,CY) in a triangle
!----
REAL(PDB) :: NODE(6),CX,CY,TLAMB(3)
!
TLAMB(1) = ((NODE(4) - NODE(6))*(CX - NODE(5)) + (NODE(5) - NODE(3))*(CY - NODE(6))) / &
((NODE(4) - NODE(6))*(NODE(1) - NODE(5)) + (NODE(5) - NODE(3))*(NODE(2) - NODE(6)))
TLAMB(2) = ((NODE(6) - NODE(2))*(CX - NODE(5)) + (NODE(1) - NODE(5))*(CY - NODE(6))) / &
((NODE(4) - NODE(6))*(NODE(1) - NODE(5)) + (NODE(5) - NODE(3))*(NODE(2) - NODE(6)))
TLAMB(3) = 1.0D0 - TLAMB(1) - TLAMB(2)
END FUNCTION EDIBAR
!
SUBROUTINE EDIG2S(IPRINT,IFGEO,NREG,NMERGE,IMERGE)
!----
! Process RECT and TRIA data options
!
!Parameters: input
! IPRINT print flag.
! IFGEO unit file number of the surfacic file.
! NREG number of regions.
!
!Parameters: input
! NMERGE number of merged indices in array IMERGE.
! IMERGE merged regions position.
!
!----
USE SALGET_FUNS_MOD
!----
! Subroutine arguments
!----
INTEGER IPRINT,IFGEO,NREG,NMERGE,IMERGE(NREG)
!----
! Local variables
!----
INTEGER PREC,DATAIN(25),IPAR(5)
REAL DATARE(25)
REAL(PDB) CX,CY,DX,DY,SAA,SAB,ANGL,RPAR(5),TLAMB1(3),TLAMB2(3)
REAL(PDB) NODX1,NODX2,NODY1,NODY2
REAL(PDB), PARAMETER :: CONV=3.141592654_PDB/180.0_PDB
PARAMETER(IFOUT0=0)
CHARACTER NAME_GEOM*12,CARLIR*8,HSMG*131
DOUBLE PRECISION DBLLIR
!----
! Allocatable arrays
!----
INTEGER, DIMENSION(:), ALLOCATABLE :: NUM_MERGE,IFLUX,ITNODE
INTEGER, DIMENSION(:,:), ALLOCATABLE :: ICOUNT
REAL(PDB), DIMENSION(:,:), ALLOCATABLE :: NODE
!----
! Read homogeneous node definitions
!----
CALL REDGET(ITYPLU,NMERGE,REALIR,CARLIR,DBLLIR)
IF(ITYPLU.NE.1) CALL XABORT('EDIG2S: INTEGER VARIABLE EXPECTED.')
IF(NMERGE.LE.0) CALL XABORT('EDIG2S: INVALID VALUE OF NMERGE.')
ALLOCATE(NODE(8,NMERGE),ITNODE(NMERGE))
DO IM=1,NMERGE
CALL REDGET(ITYPLU,INTLIR,REALIR,CARLIR,DBLLIR)
IF(ITYPLU.NE.3) CALL XABORT('EDIG2S: CHARACTER VARIABLE EXPECTED.')
IF(CARLIR.EQ.'RECT') THEN
ITNODE(IM)=1
DO I=1,4
CALL REDGET(ITYPLU,INTLIR,REALIR,CARLIR,DBLLIR)
IF(ITYPLU.NE.2) CALL XABORT('EDIG2S: REAL VARIABLE EXPECTED(1).')
NODE(I,IM)=REALIR
ENDDO
NODE(5:6,IM)=0.0D0
ELSE IF(CARLIR.EQ.'TRIA') THEN
ITNODE(IM)=2
DO I=1,6
CALL REDGET(ITYPLU,INTLIR,REALIR,CARLIR,DBLLIR)
IF(ITYPLU.NE.2) CALL XABORT('EDIG2S: REAL VARIABLE EXPECTED(2).')
NODE(I,IM)=REALIR
ENDDO
ELSE IF(CARLIR.EQ.'QUAD') THEN
ITNODE(IM)=3
DO I=1,8
CALL REDGET(ITYPLU,INTLIR,REALIR,CARLIR,DBLLIR)
IF(ITYPLU.NE.2) CALL XABORT('EDIG2S: REAL VARIABLE EXPECTED(3).')
NODE(I,IM)=REALIR
ENDDO
ELSE
CALL XABORT('EDIG2S: *RECT*, *TRIA* OR *QUAD* KEYWORD EXPECTED.')
ENDIF
ENDDO
!----
! Determine homogenization indices
!----
IF(IFGEO.EQ.0) CALL XABORT('EDIG2S: surfacic file not defined.')
CALL SALGET(DATAIN,6,IFGEO,IFOUT0,'dimensions for geometry')
NBNODE=DATAIN(3)
NBELEM=DATAIN(4)
NBFLUX=DATAIN(6)
CALL SALGET(DATAIN,3,IFGEO,IFOUT0,'index kndex prec')
INDEX=DATAIN(1)
KNDEX=DATAIN(2)
PREC=DATAIN(3)
CALL SALGET(DATARE,1,IFGEO,IFOUT0,'eps')
EPS=DATARE(1)
ALLOCATE(NUM_MERGE(NBNODE))
CALL SALGET(NUM_MERGE,NBNODE,IFGEO,IFOUT0,'FLUX INDEX PER NODE')
IF(MAXVAL(NUM_MERGE).NE.NBFLUX) CALL XABORT('EDIG2S: inconsistent NBFLUX.')
CALL SALGET(NAME_GEOM,IFGEO,IFOUT0,'NAMES OF MACROS')
ALLOCATE(IFLUX(NBFLUX))
CALL SALGET(IFLUX,NBFLUX,IFGEO,IFOUT0,'macro order number per flux region.')
DEALLOCATE(IFLUX)
ALLOCATE(ICOUNT(NBNODE,NMERGE))
ICOUNT(:NBNODE,:NMERGE)=0
DO IELEM=1,NBELEM
IPAR(:)=0
RPAR(:)=0.0
CALL SALGET(IPAR,3,IFGEO,IFOUT0,'integer descriptors')
ITYPE=IPAR(1)
SELECT CASE (ITYPE)
CASE (1)
NBER=4
CASE (2)
NBER=3
CASE (3)
NBER=5
CASE DEFAULT
WRITE(6,'(1X,''==> SAL126: unknown type '',I3)') ITYPE
CALL XABORT('EDIG2S: unknown element type.')
END SELECT
CALL SALGET(RPAR,NBER,IFGEO,IFOUT0,PREC,'real descriptors')
IF(ITYPE.EQ.1) THEN
CX=RPAR(1) ; CY=RPAR(2)
DX=CX+RPAR(3) ; DY=CY+RPAR(4)
DO IM=1,NMERGE
IF(ITNODE(IM).EQ.1) THEN
NODX1=NODE(1,IM) ; NODX2=NODE(2,IM)
NODY1=NODE(3,IM) ; NODY2=NODE(4,IM)
IF((CX.GE.NODX1-EPS).AND.(DX.LE.NODX2+EPS).AND. &
(CY.GE.NODY1-EPS).AND.(DY.LE.NODY2+EPS)) THEN
IF((ABS(CX-DX).LE.EPS).AND.(ABS(CX-NODX1).LE.EPS)) THEN ! left vertical side
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
ELSE IF((ABS(CX-DX).LE.EPS).AND.(ABS(CX-NODX2).LE.EPS)) THEN ! right vertical side
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ELSE IF((ABS(CY-DY).LE.EPS).AND.(ABS(CY-NODY1).LE.EPS)) THEN ! lower horizontal side
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ELSE IF((ABS(CY-DY).LE.EPS).AND.(ABS(CY-NODY2).LE.EPS)) THEN ! upper horizontal side
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
ELSE IF((ABS(CX-DX).LE.EPS).OR.(ABS(CY-DY).LE.EPS)) THEN
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ENDIF
ENDIF
ELSE IF(ITNODE(IM).EQ.2) THEN
TLAMB1=EDIBAR(NODE(1,IM),CX,CY)
TLAMB2=EDIBAR(NODE(1,IM),DX,DY)
IF((TLAMB1(1).GE.-EPS).AND.(TLAMB1(2).GE.-EPS).AND.(TLAMB1(3).GE.-EPS).AND. &
(TLAMB2(1).GE.-EPS).AND.(TLAMB2(2).GE.-EPS).AND.(TLAMB2(3).GE.-EPS)) THEN
IF((ABS(TLAMB1(1)).LE.EPS).AND.(ABS(TLAMB2(1)).LE.EPS)) THEN
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ELSE IF((ABS(TLAMB1(2)).LE.EPS).AND.(ABS(TLAMB2(2)).LE.EPS)) THEN
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ELSE IF((ABS(TLAMB1(3)).LE.EPS).AND.(ABS(TLAMB2(3)).LE.EPS)) THEN
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ELSE
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ENDIF
ENDIF
ELSE IF(ITNODE(IM).EQ.3) THEN
! the quadrilateral is represented as two triangles
DO ITRI=1,2
TLAMB1=EDIBAR(NODE((ITRI-1)*2+1:(ITRI-1)*2+6,IM),CX,CY)
TLAMB2=EDIBAR(NODE((ITRI-1)*2+1:(ITRI-1)*2+6,IM),DX,DY)
IF((TLAMB1(1).GE.-EPS).AND.(TLAMB1(2).GE.-EPS).AND.(TLAMB1(3).GE.-EPS).AND. &
(TLAMB2(1).GE.-EPS).AND.(TLAMB2(2).GE.-EPS).AND.(TLAMB2(3).GE.-EPS)) THEN
IF((ABS(TLAMB1(1)).LE.EPS).AND.(ABS(TLAMB2(1)).LE.EPS)) THEN
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ELSE IF((ABS(TLAMB1(2)).LE.EPS).AND.(ABS(TLAMB2(2)).LE.EPS)) THEN
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ELSE IF((ABS(TLAMB1(3)).LE.EPS).AND.(ABS(TLAMB2(3)).LE.EPS)) THEN
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ELSE
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ENDIF
ENDIF
ENDDO
ENDIF
ENDDO
ELSE IF(ITYPE.EQ.2) THEN
CX=RPAR(1) ; CY=RPAR(2)
DO IM=1,NMERGE
IF(ITNODE(IM).EQ.1) THEN
NODX1=NODE(1,IM) ; NODX2=NODE(2,IM)
NODY1=NODE(3,IM) ; NODY2=NODE(4,IM)
IF((CX.GE.NODX1-EPS).AND.(CX.LE.NODX2+EPS).AND. &
(CY.GE.NODY1-EPS).AND.(CY.LE.NODY2+EPS)) THEN
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ENDIF
ELSE IF(ITNODE(IM).EQ.2) THEN
TLAMB1=EDIBAR(NODE(1,IM),CX,CY)
IF((TLAMB1(1).GE.-EPS).AND.(TLAMB1(2).GE.-EPS).AND.(TLAMB1(3).GE.-EPS)) THEN
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ENDIF
ELSE IF(ITNODE(IM).EQ.3) THEN
! the quadrilateral is represented as two triangles
DO ITRI=1,2
TLAMB1=EDIBAR(NODE((ITRI-1)*2+1:(ITRI-1)*2+6,IM),CX,CY)
IF((TLAMB1(1).GE.-EPS).AND.(TLAMB1(2).GE.-EPS).AND.(TLAMB1(3).GE.-EPS)) THEN
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ENDIF
ENDDO
ENDIF
ENDDO
ELSE IF(ITYPE.EQ.3) THEN
SAA=RPAR(4) ; SAB=SAA+RPAR(5)
IF(SAB>SAA) THEN
ANGL=(SAB+SAA)*0.5
ELSE
ANGL=(SAB+SAA)*0.5+180.0
ENDIF
CX=RPAR(1)+COS(ANGL*CONV)*RPAR(3) ; CY=RPAR(2)+SIN(ANGL*CONV)*RPAR(3)
DO IM=1,NMERGE
IF(ITNODE(IM).EQ.1) THEN
NODX1=NODE(1,IM) ; NODX2=NODE(2,IM)
NODY1=NODE(3,IM) ; NODY2=NODE(4,IM)
IF((CX.GE.NODX1-EPS).AND.(CX.LE.NODX2+EPS).AND. &
(CY.GE.NODY1-EPS).AND.(CY.LE.NODY2+EPS)) THEN
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ENDIF
ELSE IF(ITNODE(IM).EQ.2) THEN
TLAMB1=EDIBAR(NODE(1,IM),CX,CY)
IF((TLAMB1(1).GE.-EPS).AND.(TLAMB1(2).GE.-EPS).AND.(TLAMB1(3).GE.-EPS)) THEN
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ENDIF
ELSE IF(ITNODE(IM).EQ.3) THEN
! the quadrilateral is represented as two triangles
DO ITRI=1,2
TLAMB1=EDIBAR(NODE((ITRI-1)*2+1:(ITRI-1)*2+6,IM),CX,CY)
IF((TLAMB1(1).GE.-EPS).AND.(TLAMB1(2).GE.-EPS).AND.(TLAMB1(3).GE.-EPS)) THEN
IF(IPAR(2).GT.0) ICOUNT(IPAR(2),IM)=ICOUNT(IPAR(2),IM)+1
IF(IPAR(3).GT.0) ICOUNT(IPAR(3),IM)=ICOUNT(IPAR(3),IM)+1
ENDIF
ENDDO
ENDIF
ENDDO
ENDIF
ENDDO
IMERGE(:NREG)=0
ITEST=0
DO IM=1,NMERGE
DO INODE=1,NBNODE
IF(ICOUNT(INODE,IM).GT.0) THEN
IF(IMERGE(NUM_MERGE(INODE)).NE.0) THEN
WRITE(HSMG,'(46HEDIG2S: inconsistent homogenization in mixture,I8, &
& 11h, g2s node=,I8,1h.)') IM,INODE
CALL XABORT(HSMG)
ENDIF
IMERGE(NUM_MERGE(INODE))=IM
ITEST=ITEST+1
ENDIF
ENDDO
ENDDO
DEALLOCATE(NUM_MERGE,ICOUNT,ITNODE,NODE)
IF(IPRINT.GT.0) THEN
WRITE(6,'(53H EDIG2S: NUMBER OF NODES PROCESSED BY HOMOGENIZATION=,I8/ &
& 9X,32HNUMBER OF NODES IN THE GEOMETRY=,12X,I8/ &
& 9X,31HNUMBER OF HOMOGENEOUS MIXTURES=,13X,I8)') ITEST,NBNODE,NMERGE
ENDIF
RETURN
END SUBROUTINE EDIG2S
END MODULE EDIG2S_MOD
|