1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
|
*DECK EDIDTX
SUBROUTINE EDIDTX(IPEDIT,IPFLUX,IPMACR,IADJ,IPRINT,NL,NDEL,NALBP,
> ITRANC,NGROUP,NGCOND,NBMIX,NREGIO,NMERGE,ILEAKS,
> ILUPS,NW,MATCOD,VOLUME,KEYFLX,IGCOND,IMERGE,
> FLUXES,AFLUXE,EIGENK,VOLMER,WLETYC,WENERG,
> RATECM,FLUXCM,FADJCM,FLXINT,SCATTD,SCATTS,
> NIFISS,NSAVES,CURNAM,NEDMAC,SIGS,B2,IGOVE,
> CUREIN,TIMEF,NTAUXT,NMLEAK)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Evaluate and print macroscopic reaction rates.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): G. Marleau
*
*Parameters: input
* IPEDIT pointer to the edition LCM object.
* IPFLUX pointer to the solution LCM object.
* IPMACR pointer to the macrolib LCM object.
* IADJ type of flux weighting:
* = 0 direct flux weighting;
* = 1 direct-adjoint flux weighting.
* IPRINT print level;
* = 0 no print;
* = 1 print fluxes;
* = 2 1+print reaction rates;
* = 3 2+print homogenized cross sections.
* NL number of Legendre orders.
* NDEL number of delayed precursor groups.
* NALBP number of physical albedos.
* ITRANC type of transport corrections.
* NGROUP number of groups.
* NGCOND number of groups condensed.
* NBMIX number of mixtures.
* NREGIO number of regions.
* NMERGE number of merged regions.
* ILEAKS type of leakage calculation:
* = 0 no leakage;
* = 1 homogeneous leakage (Diffon);
* = 2 isotropic streaming (Ecco);
* = 3 anisotropic streaming (Tibere).
* ILUPS flag to remove up-scattering from output.
* NW type of weighting for P1 cross section info (=0 P0; =1 P1).
* MATCOD material per region.
* VOLUME volume of region.
* KEYFLX average flux position per region.
* IGCOND limit condensed groups.
* IMERGE index of merged regions.
* FLUXES fluxes.
* AFLUXE adjoint fluxes.
* EIGENK eigenvalue for problem.
* B2 square buckling:
* for ILEAKS=1,2: B2(4) is homogeneous;
* for ILEAKS=3: B2(1),B2(2),B2(3) are directional heterogeneous
* and B2(4) is homogeneous.
* IGOVE Golfier-Vergain flag (=0/1: don't/use Golfier-Vergain equ'n).
* CUREIN infinite multiplication factor.
* NTAUXT number of reaction rate edits (=15+2*NDEL).
* TIMEF time stamp in day/burnup/irradiation.
* NMLEAK number of leakage zones.
*
*Parameters: output
* VOLMER volume of region merged.
* WLETYC lethargy width condensed.
* WENERG energy group limits.
* RATECM averaged region/group cross sections:
* = RATECM(*,1) = total P0;
* = RATECM(*,2) = total P1;
* = RATECM(*,NW+2) = absorption;
* = RATECM(*,NW+3) = fission;
* = RATECM(*,NW+4) = fixed sources / productions;
* = RATECM(*,NW+5) = leakage;
* = RATECM(*,NW+6) = total out of group scattering;
* = RATECM(*,NW+7) = diagonal scattering x-s;
* = RATECM(*,NW+8) = chi;
* = RATECM(*,NW+9) = wims type transport correction;
* = RATECM(*,NW+10) = x-directed leakage;
* = RATECM(*,NW+11) = y-directed leakage;
* = RATECM(*,NW+12) = z-directed leakage;
* = RATECM(*,NW+13) = nu-sigf for delayed neutrons;
* = RATECM(*,NW+13+NDEL) = fission spectra for delayed neutrons.
* FLUXCM integrated region/group fluxes:
* = FLUXCM(*,1) = fluxes P0;
* = FLUXCM(*,2) = fluxes P1.
* FADJCM averaged region/group adjoint fluxes:
* = FADJCM(*,1) = adjoint fluxes P0;
* = FADJCM(*,2) = adjoint fluxes P1.
* FLXINT integrated flux.
* SCATTD scattering rates.
* SCATTS homogenized scattering cross sections.
* NIFISS number of fissile isotopes.
* NSAVES homogenized x-s compute/save flag:
* = 0 no compute, no save;
* = 1 compute, no save;
* = 2 compute and save.
* CURNAM name of LCM directory where the merged/condensed x-s are
* stored.
* NEDMAC number of extra edit vectors.
* SIGS Legendre dependent scattering cross sections.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPEDIT,IPFLUX,IPMACR
INTEGER IADJ,IPRINT,NL,NDEL,NALBP,ITRANC,NGROUP,NGCOND,NBMIX,
> NREGIO,NMERGE,ILEAKS,ILUPS,NW,MATCOD(NREGIO),
> KEYFLX(NREGIO),IGCOND(NGCOND),IMERGE(NREGIO),
> NIFISS,NSAVES,NEDMAC,NTAUXT,IGOVE,NMLEAK
REAL VOLUME(NREGIO),FLUXES(NREGIO,NGROUP,NW+1),
> AFLUXE(NREGIO,NGROUP,NW+1),EIGENK,VOLMER(NMERGE),
> WENERG(NGCOND+1),RATECM(NMERGE,NGCOND,NTAUXT),
> FLUXCM(NMERGE,NGCOND,NW+1),FADJCM(NMERGE,NGCOND,NW+1),
> FLXINT(NREGIO,NGROUP,NW+1),WLETYC(NGCOND),
> SCATTS(NMERGE,NGCOND,NGCOND,NL),
> SIGS(NMERGE,NGCOND,NL),B2(4),CUREIN,TIMEF(3)
CHARACTER CURNAM*12
DOUBLE PRECISION SCATTD(NMERGE,NGCOND,NGCOND,NL)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPFLUX,JPMACR,KPMACR
CHARACTER APG*3
PARAMETER (IUNOUT=6,APG=' > ',ILCMUP=1,ILCMDN=2)
CHARACTER TEXT12*12,CM*2,OPTION*4
LOGICAL LH,LSPH
DOUBLE PRECISION SCATW,CSCAT,TOTFIS,FXSOUR,FLFUEL,FCELL
INTEGER IFSKP,ISKP(3)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IFUELR,INGSCT,IFGSCT,IPOSCT,
> IMERGL
REAL, ALLOCATABLE, DIMENSION(:) :: DISFCT,SIGMA,XSCAT,WORKF,
> ENERG,SIGMAF
REAL, ALLOCATABLE, DIMENSION(:,:) :: FFUEL,FLDMC,OVERV,HFACT,HSPH,
> DECAY,ALBPGR,DIFHET
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: TAUXE,ALBP,ALBPGR2
CHARACTER(LEN=8), ALLOCATABLE, DIMENSION(:) :: HVECT
*----
* SCRATCH STORAGE ALLOCATION
* HVECT extra edit names.
* IFUELR fuel region location.
* DISFCT disadvantage factor.
* TAUXE extra edit rates.
* FFUEL flux in fuel.
* FLDMC fission rate condensed.
* OVERV 1/v merge condensed.
* HFACT H-factors.
* HSPH SPH factors.
* DECAY precursor decay constants.
* ALBP physical albedos.
*----
ALLOCATE(HVECT(NEDMAC),IFUELR(NREGIO))
ALLOCATE(DISFCT(NGCOND),TAUXE(NMERGE,NGCOND,NEDMAC),
> FFUEL(NREGIO,NIFISS),FLDMC(NMERGE,NGCOND),OVERV(NMERGE,NGCOND),
> HFACT(NMERGE,NGCOND),HSPH(NMERGE,NGCOND),DECAY(NDEL,NIFISS),
> ALBP(NALBP,NGCOND,NGCOND))
*----
* ALLOCATE WORK VECTOR AND INITIALIZE REQUIRED VECTORS
*----
ILEAK2=ILEAKS
ALLOCATE(INGSCT(NBMIX),IFGSCT(NBMIX),IPOSCT(NBMIX))
ALLOCATE(SIGMA(0:NBMIX*MAX(NIFISS,1)),XSCAT(NBMIX*NGROUP))
RATECM(:NMERGE,:NGCOND,:NTAUXT)=0.0
FLUXCM(:NMERGE,:NGCOND,:NW+1)=0.0
FADJCM(:NMERGE,:NGCOND,:NW+1)=0.0
SIGS(:NMERGE,:NGCOND,:NL)=0.0
OVERV(:NMERGE,:NGCOND)=0.0
HFACT(:NMERGE,:NGCOND)=0.0
HSPH(:NMERGE,:NGCOND)=0.0
TAUXE(:NMERGE,:NGCOND,:NEDMAC)=0.0
VOLMER(:NMERGE)=0.0
FFUEL(:NREGIO,:NIFISS)=0.0
IFUELR(:NREGIO)=0
SIGMA(0)=0.0
IF(IADJ.EQ.0) THEN
IOP=1
ELSE IF(IADJ.EQ.1) THEN
IOP=11
ENDIF
*----
* FIND EDIT XS
*----
IF(NEDMAC.GT.0) CALL LCMGTC(IPMACR,'ADDXSNAME-P0',8,NEDMAC,HVECT)
*----
* ENERGY AND LETHARGY CONDENSATION
*----
CALL LCMLEN(IPMACR,'ENERGY',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.0) THEN
NENER=0
WLETYC(:NGCOND)=0.0
WENERG(:NGCOND+1)=0.0
ELSE IF(ILCMLN.EQ.NGROUP+1) THEN
NENER=NGCOND+1
ALLOCATE(ENERG(NGROUP+1))
CALL LCMGET(IPMACR,'ENERGY',ENERG)
WENERG(1)=ENERG(1)
DO 30 IGC=1,NGCOND
WENERG(IGC+1)=ENERG(IGCOND(IGC)+1)
WLETYC(IGC)=LOG(WENERG(IGC)/WENERG(IGC+1))
30 CONTINUE
IF(ENERG(NGROUP+1).EQ.0.0) ENERG(NGROUP+1)=1.0E-5
DEALLOCATE(ENERG)
ELSE
CALL XABORT('EDIDTX: READ ERROR INVALID NUMBER OF GROUPS')
ENDIF
*----
* COMPUTE MERGED VOLUME
*----
DO 50 IREGIO=1,NREGIO
IKK=IMERGE(IREGIO)
IF(IKK.GT.0) THEN
VOLMER(IKK)=VOLMER(IKK)+VOLUME(IREGIO)
ENDIF
50 CONTINUE
*----
* COMPUTE INTEGRATED/CONDENSED FUNDAMENTAL CURRENTS (ILEAKS=2,3)
*----
IF(ILEAKS.EQ.2) THEN
IF(IADJ.EQ.1) CALL XABORT('EDIDTX: DIRECT-ADJOINT WEIGTING NOT'
> //' IMPLEMENTED.')
CALL LCMLEN(IPFLUX,'FLUX',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.0) CALL XABORT('EDIDTX: MISSING FLUX INFO.')
JPFLUX=LCMGID(IPFLUX,'FLUX')
CALL LCMLEL(JPFLUX,1,ILCMLN,ITYLCM)
ALLOCATE(WORKF(ILCMLN))
DO 70 IGR=1,NGROUP
CALL LCMGDL(JPFLUX,IGR,WORKF)
DO 60 IREG=1,NREGIO
FLXINT(IREG,IGR,1)=WORKF(KEYFLX(IREG)+ILCMLN/2)*VOLUME(IREG)
60 CONTINUE
70 CONTINUE
IGRFIN=0
DO 90 IGRC=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
DO 80 IGR=IGRDEB,IGRFIN
*----
* COMPUTE MERGED INTEGRATED CURRENTS
*----
CALL EDIRAT(0,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> VOLUME(1),RATECM(1,IGRC,NW+5),SIGMA(0),IMERGE,NMERGE)
80 CONTINUE
90 CONTINUE
DEALLOCATE(WORKF)
ELSE IF(ILEAKS.EQ.3) THEN
IF(IADJ.EQ.1) CALL XABORT('EDIDTX: DIRECT-ADJOINT WEIGTING NOT'
> //' IMPLEMENTED.')
CALL LCMLEN(IPFLUX,'FLUX',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.0) CALL XABORT('EDIDTX: MISSING FLUX INFO.')
JPFLUX=LCMGID(IPFLUX,'FLUX')
CALL LCMLEL(JPFLUX,1,ILCMLN,ITYLCM)
*----
* CALCULATIONS FOR TIBERE PIJ
*----
IF(ILCMLN.EQ.12*NREGIO) THEN
IFSKP=3*NREGIO
ALLOCATE(WORKF(ILCMLN))
DO 140 IDIR=1,3
DO 110 IGR=1,NGROUP
CALL LCMGDL(JPFLUX,IGR,WORKF)
DO 100 IREG=1,NREGIO
FLXINT(IREG,IGR,1)=WORKF(KEYFLX(IREG)+IDIR*IFSKP)
> *VOLUME(IREG)
100 CONTINUE
110 CONTINUE
IGRFIN=0
DO 130 IGRC=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
DO 120 IGR=IGRDEB,IGRFIN
*----
* COMPUTE MERGED INTEGRATED CURRENTS FOR TIBERE PIJ
*----
CALL EDIRAT(0,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> VOLUME(1),RATECM(1,IGRC,NW+9+IDIR),SIGMA(0),
> IMERGE,NMERGE)
120 CONTINUE
130 CONTINUE
140 CONTINUE
DEALLOCATE(WORKF)
*----
* CALCULATIONS FOR TIBERE MoC
*----
ELSE IF(ILCMLN.NE.0) THEN
ALLOCATE(WORKF(ILCMLN))
DO 141 IDIR=1,3
DO 111 IGR=1,NGROUP
CALL LCMGDL(JPFLUX,IGR,WORKF)
DO 101 IREG=1,NREGIO
ISKP(1)=ILCMLN/4+KEYFLX(IREG)
ISKP(2)=ILCMLN/2+KEYFLX(IREG)
ISKP(3)=3*ILCMLN/4+KEYFLX(IREG)
FLXINT(IREG,IGR,1)=WORKF(ISKP(IDIR))*VOLUME(IREG)
101 CONTINUE
111 CONTINUE
IGRFIN=0
DO 131 IGRC=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
DO 121 IGR=IGRDEB,IGRFIN
*----
* COMPUTE MERGED INTEGRATED CURRENTS FOR TIBERE MOC
*----
CALL EDIRAT(0,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> VOLUME(1),RATECM(1,IGRC,NW+9+IDIR),SIGMA(0),
> IMERGE,NMERGE)
121 CONTINUE
131 CONTINUE
141 CONTINUE
DEALLOCATE(WORKF)
ENDIF
ENDIF
*----
* COMPUTE INTEGRATED FLUX
*----
DO 170 IW=1,NW+1
DO 160 IGR=1,NGROUP
DO 150 IREGIO=1,NREGIO
FLXINT(IREGIO,IGR,IW)=FLUXES(IREGIO,IGR,IW)*VOLUME(IREGIO)
150 CONTINUE
160 CONTINUE
170 CONTINUE
*----
* COMPUTE INTEGRATED/CONDENSED FUNDAMENTAL CURRENTS (ILEAKS=1)
* (OBTAINED AS THE PRODUCT OF THE FUNDAMENTAL FLUX BY THE LEAKAGE
* COEFFICIENT)
*----
JPMACR=LCMGID(IPMACR,'GROUP')
IF(ILEAKS.EQ.1) THEN
CALL LCMLEN(IPFLUX,'DIFFHET',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.0) THEN
CALL XABORT('EDIDTX: UNABLE TO RECOVER THE DIFFHET RECORD IN'
> //' THE FLUX OBJECT.')
ENDIF
ALLOCATE(DIFHET(NMLEAK,NGROUP),IMERGL(NBMIX))
CALL LCMLEN(IPFLUX,'IMERGE-LEAK',ILCMLN,ITYLCM)
IF(ILCMLN.NE.NBMIX) THEN
CALL XABORT('EDIDTX: IMERGE-LEAK OVERFLOW.')
ENDIF
CALL LCMGET(IPFLUX,'IMERGE-LEAK',IMERGL)
CALL LCMGET(IPFLUX,'DIFFHET',DIFHET)
CALL LCMGTC(IPFLUX,'OPTION',4,OPTION)
IGRFIN=0
DO 200 IGRC=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
DO 190 IGR=IGRDEB,IGRFIN
IF(OPTION.EQ.'LKRD') THEN
KPMACR=LCMGIL(JPMACR,IGR)
CALL LCMGET(KPMACR,'DIFF',SIGMA(1))
ELSE
IF(NMLEAK.EQ.0) CALL XABORT('EDIDTX: NO LEAKAGE ZONE.')
SIGMA(0)=0.0
DO 180 IMIX=1,NBMIX
IME=IMERGL(IMIX)
IF(IME.GT.0) SIGMA(IMIX)=DIFHET(IME,IGR)
180 CONTINUE
ENDIF
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+5),SIGMA(0),IMERGE,NMERGE)
190 CONTINUE
200 CONTINUE
DEALLOCATE(IMERGL,DIFHET)
ENDIF
*----
* READ FIXE SOURCES/COMPUTE FIXE PRODUCTION RATE AND TOTAL SOURCE
*----
IGRFIN=0
TOTFIS=0.0D0
FXSOUR=0.0D0
DO 250 IGRC=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
DO 240 IGR=IGRDEB,IGRFIN
KPMACR=LCMGIL(JPMACR,IGR)
CALL LCMLEN(KPMACR,'FIXE',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'FIXE',SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,VOLUME(1),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+4),SIGMA(0),IMERGE,
> NMERGE)
DO 210 IKK=1,NMERGE
FXSOUR=FXSOUR+DBLE(RATECM(IKK,IGRC,NW+4))
210 CONTINUE
ENDIF
DO 215 IW=1,NW+1
CALL EDIRAT(0,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,IW),
> VOLUME(1),FLUXCM(1,IGRC,IW),SIGMA(0),IMERGE,
> NMERGE)
IF(IADJ.EQ.1) THEN
CALL EDIRAT(10,NREGIO,NBMIX,MATCOD,AFLUXE(1,IGR,IW),
> FLXINT(1,IGR,IW),FADJCM(1,IGRC,IW),SIGMA(0),IMERGE,NMERGE)
DO IKK=1,NMERGE
FADJCM(IKK,IGRC,IW)=FADJCM(IKK,IGRC,IW)/
> FLUXCM(IKK,IGRC,IW)
ENDDO
ENDIF
215 CONTINUE
*----
* READ FISSION X-S/ COMPUTE FISSION RATES
*----
CALL LCMLEN(KPMACR,'NUSIGF',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'NUSIGF',SIGMA(1))
DO 230 IFIS=1,NIFISS
DO 220 IREGIO=1,NREGIO
IBM=MATCOD(IREGIO)
IF(IBM.GT.0) THEN
IF(SIGMA((IFIS-1)*NBMIX+IBM).GT.0.0) THEN
FLXFIS=FLXINT(IREGIO,IGR,1)*SIGMA((IFIS-1)*NBMIX+IBM)
FFUEL(IREGIO,IFIS)=FFUEL(IREGIO,IFIS)+FLXFIS
TOTFIS=TOTFIS+DBLE(FLXFIS)
IFUELR(IREGIO)=1
ENDIF
ENDIF
220 CONTINUE
230 CONTINUE
ENDIF
*----
240 CONTINUE
250 CONTINUE
*----
* RECOVER THE PRECURSOR RADIOACTIVE DECAY CONSTANTS. USE THE VALUES
* OF THE FISSILE ISOTOPE WITH MAXIMUM FISSION RATE
*----
IF(CURNAM.NE.' ') THEN
CALL LCMLEN(IPMACR,'LAMBDA-D',ILCMLN,ITYLCM)
IF((NDEL.GT.0).AND.(ILCMLN.GT.0)) THEN
ZMAX=0.0
KFIS=0
DO 340 IFIS=1,NIFISS
ZTOT=0.0
DO 330 IREGIO=1,NREGIO
ZTOT=ZTOT+FFUEL(IREGIO,IFIS)
330 CONTINUE
IF(ZTOT.GE.ZMAX) THEN
KFIS=IFIS
ZMAX=ZTOT
ENDIF
340 CONTINUE
CALL LCMGET(IPMACR,'LAMBDA-D',DECAY)
CALL LCMSIX(IPEDIT,CURNAM,ILCMUP)
CALL LCMSIX(IPEDIT,'MACROLIB',ILCMUP)
CALL LCMPUT(IPEDIT,'LAMBDA-D',NDEL,2,DECAY(1,KFIS))
CALL LCMSIX(IPEDIT,' ',ILCMDN)
CALL LCMSIX(IPEDIT,' ',ILCMDN)
ENDIF
ENDIF
*----
* FIND FUEL VOLUME FOR DISADVANTAGE FACTOR
*----
VFUEL=0.0
VCELL=0.0
DO 350 IREGIO=1,NREGIO
IF(IFUELR(IREGIO).EQ.1) THEN
VFUEL=VFUEL+VOLUME(IREGIO)
ENDIF
VCELL=VCELL+VOLUME(IREGIO)
350 CONTINUE
LH=.FALSE.
LSPH=.FALSE.
IGRFIN=0
DO 510 IGRC=1,NGCOND
FCELL=0.0D0
FLFUEL=0.0D0
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
DO 380 JGRC=1,NGCOND
DO 370 I=1,NMERGE
DO 360 IL=1,NL
SCATTD(I,IGRC,JGRC,IL)=0.0D0
360 CONTINUE
370 CONTINUE
380 CONTINUE
DO 500 IGR=IGRDEB,IGRFIN
KPMACR=LCMGIL(JPMACR,IGR)
*----
* INTEGRATED 1/V
*----
CALL LCMLEN(KPMACR,'OVERV',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'OVERV',SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),OVERV(1,IGRC),SIGMA(0),
> IMERGE,NMERGE)
ENDIF
*----
* INTEGRATED H-FACTORS
*----
CALL LCMLEN(KPMACR,'H-FACTOR',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
LH=.TRUE.
CALL LCMGET(KPMACR,'H-FACTOR',SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),HFACT(1,IGRC),SIGMA(0),
> IMERGE,NMERGE)
ENDIF
*----
* SPH FACTORS
*----
CALL LCMLEN(KPMACR,'NSPH',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
LSPH=.TRUE.
CALL LCMGET(KPMACR,'NSPH',SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),HSPH(1,IGRC),SIGMA(0),
> IMERGE,NMERGE)
ENDIF
*----
* TOTAL, ABSROPTION, ETC. RATES
*----
CALL LCMLEN(KPMACR,'NTOT0',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.0) CALL XABORT('EDIDTX: READ ERROR ON LCM REC'//
> 'ORD= TOTAL')
CALL LCMGET(KPMACR,'NTOT0',SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+2),SIGMA(0),IMERGE,NMERGE)
DO 385 IW=1,NW+1
WRITE(TEXT12,'(4HNTOT,I1)') IW-1
CALL LCMLEN(KPMACR,TEXT12,ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) CALL LCMGET(KPMACR,TEXT12,SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,IW),
> AFLUXE(1,IGR,IW),RATECM(1,IGRC,IW),SIGMA(0),IMERGE,
> NMERGE)
385 CONTINUE
CALL LCMLEN(KPMACR,'SIGS00',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'SIGS00',SIGMA(1))
CALL EDIRAT(-IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+2),SIGMA(0),IMERGE,NMERGE)
ENDIF
IF(ILEAKS.EQ.0) THEN
CALL LCMLEN(KPMACR,'DIFF',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'DIFF',SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+5),SIGMA(0),IMERGE,
> NMERGE)
ILEAK2=10
ENDIF
CALL LCMLEN(KPMACR,'DIFFX',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'DIFFX',SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+10),SIGMA(0),IMERGE,
> NMERGE)
ILEAK2=11
ENDIF
CALL LCMLEN(KPMACR,'DIFFY',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'DIFFY',SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+11),SIGMA(0),IMERGE,
> NMERGE)
ILEAK2=11
ENDIF
CALL LCMLEN(KPMACR,'DIFFZ',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'DIFFZ',SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+12),SIGMA(0),IMERGE,
> NMERGE)
ILEAK2=11
ENDIF
ENDIF
*----
* READ ADDITIONAL X-SECTIONS
*----
DO 390 IED=1,NEDMAC
IF(HVECT(IED)(:2).EQ.'NW') GO TO 390
CALL LCMLEN(KPMACR,HVECT(IED),ILONG,ITYLCM)
IF(ILONG.GT.0) THEN
CALL LCMGET(KPMACR,HVECT(IED),SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),TAUXE(1,IGRC,IED),SIGMA(0),
> IMERGE,NMERGE)
ENDIF
390 CONTINUE
*----
* FISSION SPECTRUM AND NU*SIGF
*----
CALL LCMLEN(KPMACR,'NUSIGF',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
ALLOCATE(SIGMAF(0:NBMIX))
SIGMAF(0)=0.0
CALL LCMGET(KPMACR,'NUSIGF',SIGMA(1))
DO 400 IFIS=1,NIFISS
DO 395 IBM=1,NBMIX
SIGMAF(IBM)=SIGMA((IFIS-1)*NBMIX+IBM)
395 CONTINUE
CALL EDIRAT(1,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+3),SIGMAF(0),IMERGE,
> NMERGE)
400 CONTINUE
DEALLOCATE(SIGMAF)
ENDIF
CALL LCMLEN(KPMACR,'CHI',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
ALLOCATE(SIGMAF(0:NBMIX))
SIGMAF(0)=0.0
CALL LCMGET(KPMACR,'CHI',SIGMA(1))
DO 410 IFIS=1,NIFISS
DO 405 IBM=1,NBMIX
SIGMAF(IBM)=SIGMA((IFIS-1)*NBMIX+IBM)
405 CONTINUE
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FFUEL(1,IFIS),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+4),SIGMAF(0),IMERGE,
> NMERGE)
410 CONTINUE
DEALLOCATE(SIGMAF)
ENDIF
*----
* DELAYED FISSION SPECTRUM AND NU*SIGF
*----
DO 440 IDEL=1,NDEL
WRITE(TEXT12,'(6HNUSIGF,I2.2)') IDEL
CALL LCMLEN(KPMACR,TEXT12,ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
ALLOCATE(SIGMAF(0:NBMIX))
SIGMAF(0)=0.0
CALL LCMGET(KPMACR,TEXT12,SIGMA(1))
DO 420 IFIS=1,NIFISS
DO 415 IBM=1,NBMIX
SIGMAF(IBM)=SIGMA((IFIS-1)*NBMIX+IBM)
415 CONTINUE
CALL EDIRAT(1,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> VOLUME(1),RATECM(1,IGRC,12+NW+IDEL),SIGMAF(0),IMERGE,
> NMERGE)
420 CONTINUE
DEALLOCATE(SIGMAF)
ENDIF
WRITE(TEXT12,'(3HCHI,I2.2)') IDEL
CALL LCMLEN(KPMACR,TEXT12,ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
ALLOCATE(SIGMAF(0:NBMIX))
SIGMAF(0)=0.0
CALL LCMGET(KPMACR,TEXT12,SIGMA(1))
DO 430 IFIS=1,NIFISS
DO 425 IBM=1,NBMIX
SIGMAF(IBM)=SIGMA((IFIS-1)*NBMIX+IBM)
425 CONTINUE
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FFUEL(1,IFIS),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,12+NW+NDEL+IDEL),
> SIGMAF(0),IMERGE,NMERGE)
430 CONTINUE
DEALLOCATE(SIGMAF)
ENDIF
440 CONTINUE
*----
* INTEGRATED FLUX AND FORM FACTOR
*----
DO 450 IREGIO=1,NREGIO
IF(IFUELR(IREGIO).EQ.1) THEN
FLFUEL=FLFUEL+DBLE(FLXINT(IREGIO,IGR,1))
ENDIF
FCELL=FCELL+DBLE(FLXINT(IREGIO,IGR,1))
450 CONTINUE
*----
* TRANSPORT CORRECTION
*----
IF(ITRANC.NE.0) THEN
CALL LCMLEN(KPMACR,'TRANC',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'TRANC',SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,1),
> AFLUXE(1,IGR,1),RATECM(1,IGRC,NW+9),SIGMA(0),IMERGE,
> NMERGE)
ENDIF
ENDIF
*----
* SCATTERING NEUTRONS
*----
DO 490 IL=1,NL
IW=MIN(IL,NW+1)
WRITE (CM,'(I2.2)') IL-1
CALL LCMLEN(KPMACR,'SIGS'//CM,ILCSCA,ITYLCM)
IF(ILCSCA.GT.0) THEN
CALL LCMGET(KPMACR,'SIGS'//CM,SIGMA(1))
CALL EDIRAT(IOP,NREGIO,NBMIX,MATCOD,FLXINT(1,IGR,IW),
> AFLUXE(1,IGR,IW),SIGS(1,IGRC,IL),SIGMA(0),IMERGE,NMERGE)
ENDIF
CALL LCMLEN(KPMACR,'NJJS'//CM,ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'SIGW'//CM,SIGMA(1))
CALL LCMGET(KPMACR,'NJJS'//CM,INGSCT)
CALL LCMGET(KPMACR,'IJJS'//CM,IFGSCT)
CALL LCMGET(KPMACR,'IPOS'//CM,IPOSCT)
CALL LCMGET(KPMACR,'SCAT'//CM,XSCAT)
DO 480 IREGIO=1,NREGIO
MATNUM=MATCOD(IREGIO)
IKK=IMERGE(IREGIO)
IF((IKK.GT.0).AND.(MATNUM.GT.0)) THEN
NGSCAT=INGSCT(MATNUM)
IGSCAT=IFGSCT(MATNUM)
IPOSIT=IPOSCT(MATNUM)
JGRFIN=0
FAD=1.0
IF(IADJ.EQ.1) FAD=AFLUXE(IREGIO,IGR,IW)
DO 470 JGRC=1,NGCOND
JGRDEB=JGRFIN+1
JGRFIN=IGCOND(JGRC)
J2=MIN(JGRFIN,IGSCAT)
J1=MAX(JGRDEB,IGSCAT-NGSCAT+1)
IPO=IPOSIT+IGSCAT-J2
DO 460 JGR=J2,J1,-1
IF(IGR.EQ.JGR) THEN
SCATTD(IKK,IGRC,JGRC,IL)=SCATTD(IKK,IGRC,JGRC,IL)
> +SIGMA(MATNUM)*FLXINT(IREGIO,JGR,IW)*FAD
ELSE
SCATTD(IKK,IGRC,JGRC,IL)=SCATTD(IKK,IGRC,JGRC,IL)
> +XSCAT(IPO)*FLXINT(IREGIO,JGR,IW)*FAD
ENDIF
IPO=IPO+1
460 CONTINUE
470 CONTINUE
ENDIF
480 CONTINUE
ENDIF
490 CONTINUE
500 CONTINUE
IF(VFUEL*FCELL.GT.0.0) THEN
DISFCT(IGRC)=REAL(FLFUEL*VCELL/(VFUEL*FCELL))
ELSE
DISFCT(IGRC)=0.0
ENDIF
510 CONTINUE
*----
* UP-SCATTERING CORRECTIONS
*----
IF(ILUPS.EQ.1) THEN
DO 523 IKK=1,NMERGE
DO 522 IGRC=2,NGCOND
DO 521 JGRC=1,IGRC-1
CSCAT=SCATTD(IKK,JGRC,IGRC,1) ! JGRC < IGRC
RATECM(IKK,IGRC,1)=RATECM(IKK,IGRC,1)-REAL(CSCAT)
RATECM(IKK,JGRC,1)=RATECM(IKK,JGRC,1)-REAL(CSCAT)
IF((NW.GE.1).AND.(NL.GE.1)) THEN
CSCAT=SCATTD(IKK,JGRC,IGRC,2)
RATECM(IKK,IGRC,2)=RATECM(IKK,IGRC,2)-REAL(CSCAT)
RATECM(IKK,JGRC,2)=RATECM(IKK,JGRC,2)-REAL(CSCAT)
ENDIF
DO 520 IL=1,NL
CSCAT=SCATTD(IKK,JGRC,IGRC,IL)
SIGS(IKK,IGRC,IL)=SIGS(IKK,IGRC,IL)-REAL(CSCAT)
SIGS(IKK,JGRC,IL)=SIGS(IKK,JGRC,IL)-REAL(CSCAT)
SCATTD(IKK,IGRC,JGRC,IL)=SCATTD(IKK,IGRC,JGRC,IL)-CSCAT
SCATTD(IKK,JGRC,IGRC,IL)=0.0D0
520 CONTINUE
521 CONTINUE
522 CONTINUE
523 CONTINUE
ENDIF
*----
* SCATTERING NORMALIZATION
*----
IF(IADJ.EQ.0) THEN
DO 560 IGRC=1,NGCOND
DO 550 IKK=1,NMERGE
DO 540 IL=1,NL
IF(ILCSCA.GT.0) THEN
SCATW=SIGS(IKK,IGRC,IL)
DO 530 JGRC=1,NGCOND
IF(JGRC.NE.IGRC) SCATW=SCATW-SCATTD(IKK,JGRC,IGRC,IL)
530 CONTINUE
DEN=REAL(MAX(ABS(SCATW),ABS(SCATTD(IKK,IGRC,IGRC,IL))))
IF(DEN.GT.0.0) THEN
ERR=ABS(REAL(SCATW-SCATTD(IKK,IGRC,IGRC,IL)))/DEN
IF(ERR.GT.1.0E-3) THEN
WRITE(IUNOUT,6000) IL,IGRC,IKK,100.0*ERR
ENDIF
SCATTD(IKK,IGRC,IGRC,IL)=SCATW
ENDIF
ELSE
SCATW=0.0D0
DO 535 JGRC=1,NGCOND
SCATW=SCATW+SCATTD(IKK,JGRC,IGRC,IL)
535 CONTINUE
SIGS(IKK,IGRC,IL)=REAL(SCATW)
ENDIF
540 CONTINUE
550 CONTINUE
560 CONTINUE
ENDIF
*----
* FISSION SPECTRUM NORMALIZATION
*----
IF((FXSOUR.EQ.0.0D0).AND.(TOTFIS.GT.0.0D0)) THEN
FLDMC(:NMERGE,:NGCOND)=0.0
DO 580 IGRC=1,NGCOND
DO 570 IFIS=1,NIFISS
CALL EDIRAT(0,NREGIO,NBMIX,MATCOD,FFUEL(1,IFIS),VOLUME(1),
> FLDMC(1,IGRC),SIGMA(0),IMERGE,NMERGE)
570 CONTINUE
580 CONTINUE
DO 640 IKK=1,NMERGE
TOTAL1=0.0
DO 590 IGRC=1,NGCOND
IF(RATECM(IKK,IGRC,NW+4).NE.0.0) THEN
RATECM(IKK,IGRC,NW+8)=RATECM(IKK,IGRC,NW+4)/FLDMC(IKK,IGRC)
TOTAL1=TOTAL1+RATECM(IKK,IGRC,NW+8)
ELSE
RATECM(IKK,IGRC,NW+8)=0.0
ENDIF
590 CONTINUE
IF((IADJ.EQ.0).AND.(TOTAL1.NE.0.0)) THEN
DO 600 IGRC=1,NGCOND
RATECM(IKK,IGRC,NW+8)=RATECM(IKK,IGRC,NW+8)/TOTAL1
600 CONTINUE
ELSE IF(IADJ.EQ.1) THEN
DO 601 IGRC=1,NGCOND
RATECM(IKK,IGRC,NW+8)=RATECM(IKK,IGRC,NW+8)/
> FADJCM(IKK,IGRC,1)
601 CONTINUE
ENDIF
DO 630 IDEL=1,NDEL
K=12+NW+NDEL+IDEL
TOTAL1=0.0
DO 610 IGRC=1,NGCOND
IF(RATECM(IKK,IGRC,K).NE.0.0) THEN
RATECM(IKK,IGRC,K)=RATECM(IKK,IGRC,K)/FLDMC(IKK,IGRC)
TOTAL1=TOTAL1+RATECM(IKK,IGRC,K)
ELSE
RATECM(IKK,IGRC,K)=0.0
ENDIF
610 CONTINUE
IF((IADJ.EQ.0).AND.(TOTAL1.NE.0.0)) THEN
DO 620 IGRC=1,NGCOND
RATECM(IKK,IGRC,K)=RATECM(IKK,IGRC,K)/TOTAL1
620 CONTINUE
ELSE IF(IADJ.EQ.1) THEN
DO 621 IGRC=1,NGCOND
RATECM(IKK,IGRC,K)=RATECM(IKK,IGRC,K)/FADJCM(IKK,IGRC,1)
621 CONTINUE
ENDIF
630 CONTINUE
640 CONTINUE
ENDIF
DEALLOCATE(XSCAT,SIGMA)
DEALLOCATE(IPOSCT,IFGSCT,INGSCT)
*----
* CONDENSATION OF PHYSICAL ALBEDOS
*----
IF(NALBP.GT.0) THEN
ALBP(:NALBP,:NGCOND,:NGCOND)=0.0
CALL LCMLEN(IPMACR,'ALBEDO',ILONG,ITYLCM)
IF(ILONG.EQ.NALBP*NGROUP) THEN
* diagonal physical albedos
ALLOCATE(ALBPGR(NALBP,NGROUP))
CALL LCMGET(IPMACR,'ALBEDO',ALBPGR)
IGRFIN=0
DO 663 IGRC=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
DENOM=0.0
DO 655 IGR=IGRDEB,IGRFIN
DO 650 IREGIO=1,NREGIO
DENOM=DENOM+FLXINT(IREGIO,IGR,1)
650 CONTINUE
655 CONTINUE
DO 662 IAL=1,NALBP
DO 661 IGR=IGRDEB,IGRFIN
DO 660 IREGIO=1,NREGIO
ALBP(IAL,IGRC,IGRC)=ALBP(IAL,IGRC,IGRC)+ALBPGR(IAL,IGR)*
1 FLXINT(IREGIO,IGR,1)/DENOM
660 CONTINUE
661 CONTINUE
662 CONTINUE
663 CONTINUE
DEALLOCATE(ALBPGR)
ELSE IF(ILONG.EQ.NALBP*NGROUP*NGROUP) THEN
* matrix physical albedos
ALLOCATE(ALBPGR2(NALBP,NGROUP,NGROUP))
CALL LCMGET(IPMACR,'ALBEDO',ALBPGR2)
IGRFIN=0
DO 765 IGRC=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRC)
DENOM=0.0
DO 755 IGR=IGRDEB,IGRFIN
DO 750 IREGIO=1,NREGIO
DENOM=DENOM+FLXINT(IREGIO,IGR,1)
750 CONTINUE
755 CONTINUE
DO 764 IAL=1,NALBP
DO 763 IGR=IGRDEB,IGRFIN
JGRFIN=0
DO 762 JGRC=1,NGCOND
JGRDEB=JGRFIN+1
JGRFIN=IGCOND(JGRC)
DO 761 JGR=JGRDEB,JGRFIN
DO 760 IREGIO=1,NREGIO
ALBP(IAL,JGRC,IGRC)=ALBP(IAL,JGRC,IGRC)+ALBPGR2(IAL,JGR,IGR)*
1 FLXINT(IREGIO,IGR,1)/DENOM
760 CONTINUE
761 CONTINUE
762 CONTINUE
763 CONTINUE
764 CONTINUE
765 CONTINUE
DEALLOCATE(ALBPGR2)
ELSE
CALL XABORT('EDIDTX: INCONSISTENT ALBEDO INFORMATION.')
ENDIF
ENDIF
*----
* PRINT REACTION RATES
*----
ILEAKS=ILEAK2
IF(IPRINT.GE.1) THEN
CALL EDIPRR(IPRINT,NL,ITRANC,NGCOND,NMERGE,ILEAKS,NW,NTAUXT,
> B2,VOLMER,NENER,WENERG,RATECM,FLUXCM,SCATTD)
ENDIF
*----
* COMPUTE MERGED/CONDENSED X-S
*----
CALL EDIPXS(IPEDIT,IADJ,IPRINT,NL,NDEL,NALBP,ITRANC,NSAVES,NGCOND,
> NMERGE,ILEAKS,NW,NTAUXT,EIGENK,B2,IGOVE,CUREIN,NIFISS,
> CURNAM,NEDMAC,VOLMER,WLETYC,WENERG,SCATTD,RATECM,
> FLUXCM,FADJCM,SIGS,SCATTS,DISFCT,ALBP,TAUXE,HVECT,
> OVERV,HFACT,HSPH,NENER,TIMEF,LH,LSPH)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(ALBP,DECAY,HSPH,HFACT,OVERV,FLDMC,FFUEL,TAUXE,DISFCT)
DEALLOCATE(IFUELR,HVECT)
RETURN
*----
* FORMAT
*----
6000 FORMAT(/53H EDIDTX: *** WARNING *** NORMALIZATION OF THE WITHIN-,
> 34HGROUP SCATTERING TRANSFER OF ORDER,I3,9H IN GROUP,I4,5H AND ,
> 6HREGION,I5,3H BY,F6.2,3H %.)
END
|