1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
*DECK EDIALB
SUBROUTINE EDIALB(IPMAC2,IPFLUX,IPMACR,IPSYS,IPRINT,NBMIX,
1 NW,B2,NGROUP,NIFISS,NGCOND,ITRANC,ILEAKS,NREGIO,MATCOD,
2 VOLUME,KEYFLX,IGCOND,FLUXES,NMLEAK)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute boundary current from ALBS information for use with SPH
* equivalence techniques.
*
*Copyright:
* Copyright (C) 2011 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPMAC2 pointer to condensed macrolib information (L_MACROLIB
* signature) built by EDI:.
* IPFLUX pointer to the reference solution (L_FLUX signature).
* IPMACR pointer to the reference macrolib (L_MACROLIB signature).
* IPSYS pointer to the reference pij LCM object (L_PIJ signature).
* IPRINT print index.
* NBMIX number of mixtures in the reference geometry.
* NW type of weighting for P1 cross section information:
* = 0 P0; = 1 P1.
* B2 square buckling array.
* For ILEAKS = 1 or 2, B2(4) is the homogeneous square buckling;
* for ILEAKS = 3, B2(1),B2(2),B2(3) are the directional
* heterogeneous and B2(4) is the homogeneous square buckling.
* NGROUP number of energy groups in the reference calculation.
* NIFISS number of fissile isotopes.
* NGCOND number of condensed groups.
* ITRANC type of transport correction.
* ILEAKS type of leakage calculation: =0: no leakage; =1: homogeneous
* leakage (Diffon); =2: isotropic streaming (Ecco);
* =3: anisotropic streaming (Tibere).
* NREGIO number of regions in the reference geometry.
* MATCOD mixture index in region.
* VOLUME volume of region.
* KEYFLX position of average fluxes.
* IGCOND limit of condensed groups.
* FLUXES fluxes.
* NMLEAK number of leakage zones.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPMAC2,IPFLUX,IPMACR,IPSYS
INTEGER IPRINT,NBMIX,NW,NGROUP,NIFISS,NGCOND,ITRANC,ILEAKS,
1 NREGIO,MATCOD(NREGIO),KEYFLX(NREGIO),IGCOND(NGCOND),NMLEAK
REAL B2(4),VOLUME(NREGIO),FLUXES(NREGIO,NGROUP,NW+1)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPSYS,KPSYS,IPSYS2,JPMACR,KPMACR,JPFLUX
CHARACTER TEXT5*5,SUFF(2)*2
DOUBLE PRECISION SUM,SUD
INTEGER, ALLOCATABLE, DIMENSION(:) :: NJJ,IJJ,IPOS,IMERGL
REAL, ALLOCATABLE, DIMENSION(:) :: SIGMA,XSCAT,GAMMA,SIG1,WORKD
REAL, ALLOCATABLE, DIMENSION(:,:) :: DIFHET,COURIN,WORK
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: PRODUC
DATA SUFF/'00','01'/
*----
* SCRATCH STORAGE ALLOCATION
* COURIN ingoing currents (4*J-/S). PIS information must be available
* on LCM.
*----
ALLOCATE(NJJ(NBMIX),IJJ(NBMIX),IPOS(NBMIX))
ALLOCATE(COURIN(NGCOND,2),PRODUC(NREGIO,NGCOND,NIFISS))
ALLOCATE(WORK(NREGIO,2),SIGMA(0:NBMIX*NIFISS),XSCAT(NBMIX*NGROUP))
ALLOCATE(DIFHET(NMLEAK,NGROUP),IMERGL(NBMIX),GAMMA(NGROUP))
*----
* CONSISTENCY TESTS
*----
IF(.NOT.C_ASSOCIATED(IPSYS)) THEN
CALL XABORT('EDIALB: THE L_PIJ INFO IS NOT AVAILABLE.')
ENDIF
JPSYS=LCMGID(IPSYS,'GROUP')
KPSYS=LCMGIL(JPSYS,1)
CALL LCMLEN(KPSYS,'DRAGON-WIS',IXSLEN,ITYLCM)
IF(IXSLEN.NE.NREGIO) THEN
CALL LCMLIB(KPSYS)
WRITE(TEXT5,'(I5)') NREGIO
CALL XABORT('EDIALB: THE ALBS OPTION OF THE ASM: MODULE HAS NO'
> //'T BEEN ACTIVATED. NREGIO='//TEXT5)
ENDIF
*----
* COMPUTE THE FISSION RATE INFORMATION
*----
SIGMA(0)=0.0
PRODUC(:NREGIO,:NGCOND,:NIFISS)=0.0
IGRFIN=0
JPMACR=LCMGID(IPMACR,'GROUP')
DO 45 IGRCD=1,NGCOND
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRCD)
DO 40 IGR=IGRDEB,IGRFIN
KPMACR=LCMGIL(JPMACR,IGR)
CALL LCMLEN(KPMACR,'NUSIGF',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'NUSIGF',SIGMA(1))
DO 35 IFIS=1,NIFISS
DO 30 IREG=1,NREGIO
IBM=MATCOD(IREG)
IF(IBM.GT.0) THEN
SS=FLUXES(IREG,IGR,1)*SIGMA((IFIS-1)*NBMIX+IBM)
PRODUC(IREG,IGRCD,IFIS)=PRODUC(IREG,IGRCD,IFIS)+SS
ENDIF
30 CONTINUE
35 CONTINUE
ENDIF
40 CONTINUE
45 CONTINUE
CALL LCMLEN(IPFLUX,'K-EFFECTIVE',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.1) THEN
CALL LCMGET(IPFLUX,'K-EFFECTIVE',EIGENK)
ELSE
EIGENK=1.0
ENDIF
IF(IPRINT.GT.5) WRITE(6,'(/16H EDIALB: EIGENK=,1P,E12.4)') EIGENK
*----
* COMPUTE MERGED/CONDENSED CROSS SECTIONS
*----
IF(ILEAKS.EQ.1) THEN
CALL LCMLEN(IPFLUX,'DIFFHET',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.0) THEN
CALL XABORT('EDIALB: UNABLE TO RECOVER THE DIFFHET RECORD IN'
> //' THE FLUX OBJECT.')
ENDIF
CALL LCMGET(IPFLUX,'IMERGE-LEAK',IMERGL)
CALL LCMGET(IPFLUX,'DIFFHET',DIFHET)
ENDIF
IF(NW.EQ.1) CALL LCMGET(IPFLUX,'GAMMA',GAMMA)
CALL LCMSIX(IPMAC2,'ADF',1)
DO 180 INL=1,NW+1
IGRFIN=0
DO 175 IGRCD=1,NGCOND
COURIN(IGRCD,:2)=0.0
IGRDEB=IGRFIN+1
IGRFIN=IGCOND(IGRCD)
IF((ILEAKS.EQ.2).OR.(ILEAKS.EQ.3)) THEN
CALL LCMLEN(IPFLUX,'FLUX',ILON,ITYLCM)
IF(ILON.EQ.0) CALL XABORT('EDIALB: MISSING FLUX INFO.')
JPFLUX=LCMGID(IPFLUX,'FLUX')
ENDIF
DO 170 IGR=IGRDEB,IGRFIN
KPMACR=LCMGIL(JPMACR,IGR)
CALL LCMLEN(KPMACR,'NTOT0',ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'NTOT0',SIGMA(1))
ELSE
CALL XABORT('EDIALB: READ ERROR ON LCM RECORD= TOTAL.')
ENDIF
IF((ITRANC.NE.0).AND.(INL.EQ.1)) THEN
* TRANSPORT CORRECTION.
ALLOCATE(SIG1(NBMIX))
CALL LCMGET(KPMACR,'TRANC',SIG1)
DO 50 IMAT=1,NBMIX
SIGMA(IMAT)=SIGMA(IMAT)-SIG1(IMAT)
50 CONTINUE
DEALLOCATE(SIG1)
ENDIF
IF((ILEAKS.EQ.2).OR.(ILEAKS.EQ.3)) THEN
CALL LCMLEL(JPFLUX,IGR,ILCMLN,ITYLCM)
IF(ILCMLN.EQ.0) CALL XABORT('EDIALB: MISSING FLUX INFO.')
ALLOCATE(WORKD(ILCMLN))
CALL LCMGDL(JPFLUX,IGR,WORKD)
ENDIF
ZNUM=0.0
IF((NW.EQ.1).AND.(INL.EQ.2)) THEN
* USE WITH THE FUNDAMENTAL CURRENT EQUATION OF THE ECCO MODEL.
ZDEN=0.0
DO 55 IREG=1,NREGIO
IBM=MATCOD(IREG)
ZNUM=ZNUM+SIGMA(IBM)*FLUXES(IREG,IGR,1)*VOLUME(IREG)
ZDEN=ZDEN+FLUXES(IREG,IGR,1)*VOLUME(IREG)
55 CONTINUE
ZNUM=ZNUM/ZDEN
ENDIF
DO 60 IREG=1,NREGIO
IBM=MATCOD(IREG)
ZLEAK=0.0
IF((NW.EQ.1).AND.(INL.EQ.1)) THEN
ZLEAK=B2(4)*FLUXES(IREG,IGR,2)
ELSE IF((NW.EQ.1).AND.(INL.EQ.2)) THEN
ZLEAK=(-(1.0-GAMMA(IGR))*(ZNUM-SIGMA(IBM))*FLUXES(IREG,IGR,2)
> -FLUXES(IREG,IGR,1)/3.0)/GAMMA(IGR)
ELSE IF(ILEAKS.EQ.1) THEN
IME=IMERGL(IBM)
IF(IME.GT.0) ZLEAK=DIFHET(IME,IGR)*B2(4)*FLUXES(IREG,IGR,1)
ELSE IF(ILEAKS.EQ.2) THEN
ZLEAK=B2(4)*WORKD(KEYFLX(IREG)+ILCMLN/2)
ELSE IF(ILEAKS.EQ.3) THEN
ZLEAK=B2(1)*WORKD(KEYFLX(IREG)+ILCMLN/4)+
> B2(2)*WORKD(KEYFLX(IREG)+ILCMLN/2)+
> B2(3)*WORKD(KEYFLX(IREG)+3*ILCMLN/4)
ENDIF
WORK(IREG,1)=-ZLEAK
60 CONTINUE
IF((ILEAKS.EQ.2).OR.(ILEAKS.EQ.3)) DEALLOCATE(WORKD)
*
CALL LCMLEN(KPMACR,'CHI',ILCMLN,ITYLCM)
IF((ILCMLN.GT.0).AND.(INL.EQ.1)) THEN
DO 85 IFIS=1,NIFISS
CALL LCMGET(KPMACR,'CHI',SIGMA(1))
DO 80 IREG=1,NREGIO
IBM=MATCOD(IREG)
IF(IBM.GT.0) THEN
DO 70 JGRCD=1,NGCOND
SS=SIGMA((IFIS-1)*NBMIX+IBM)*PRODUC(IREG,JGRCD,IFIS)/EIGENK
WORK(IREG,1)=WORK(IREG,1)+SS
70 CONTINUE
ENDIF
80 CONTINUE
85 CONTINUE
ENDIF
*
CALL LCMLEN(KPMACR,'SIGW'//SUFF(INL),ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'SIGW'//SUFF(INL),SIGMA(1))
ELSE
SIGMA(:NBMIX)=0.0
ENDIF
IF((ITRANC.NE.0).AND.(INL.EQ.1)) THEN
* TRANSPORT CORRECTION.
ALLOCATE(SIG1(NBMIX))
CALL LCMGET(KPMACR,'TRANC',SIG1)
DO 120 IMAT=1,NBMIX
SIGMA(IMAT)=SIGMA(IMAT)-SIG1(IMAT)
120 CONTINUE
DEALLOCATE(SIG1)
ENDIF
CALL LCMLEN(KPMACR,'NJJS'//SUFF(INL),ILCMLN,ITYLCM)
IF(ILCMLN.GT.0) THEN
CALL LCMGET(KPMACR,'NJJS'//SUFF(INL),NJJ)
CALL LCMGET(KPMACR,'IJJS'//SUFF(INL),IJJ)
CALL LCMGET(KPMACR,'IPOS'//SUFF(INL),IPOS)
CALL LCMGET(KPMACR,'SCAT'//SUFF(INL),XSCAT)
DO 150 IREG=1,NREGIO
IBM=MATCOD(IREG)
IF(IBM.GT.0) THEN
JGRFIN=0
DO 140 JGRCD=1,NGCOND
SS=0.0D0
JGRDEB=JGRFIN+1
JGRFIN=IGCOND(JGRCD)
J2=MIN(JGRFIN,IJJ(IBM))
J1=MAX(JGRDEB,IJJ(IBM)-NJJ(IBM)+1)
IPO=IPOS(IBM)+IJJ(IBM)-J2
DO 130 JGR=J2,J1,-1
IF(IGR.EQ.JGR) THEN
SS=SS+SIGMA(IBM)*FLUXES(IREG,JGR,INL)
ELSE
SS=SS+XSCAT(IPO)*FLUXES(IREG,JGR,INL)
ENDIF
IPO=IPO+1
130 CONTINUE
IF(INL.EQ.2) SS=SS/GAMMA(IGR)
WORK(IREG,1)=WORK(IREG,1)+SS
140 CONTINUE
ENDIF
150 CONTINUE
ENDIF
*----
* COMPUTE BOUNDARY CURRENTS
*----
IF(INL.EQ.1) THEN
JPSYS=LCMGID(IPSYS,'GROUP')
ELSE IF(INL.EQ.2) THEN
IPSYS2=LCMGID(IPSYS,'STREAMING')
JPSYS=LCMGID(IPSYS2,'GROUP')
ENDIF
KPSYS=LCMGIL(JPSYS,IGR)
CALL LCMLEN(KPSYS,'DRAGON-WIS',ILCMLN,ITYLCM)
IF(ILCMLN.EQ.NREGIO) THEN
CALL LCMGET(KPSYS,'DRAGON-WIS',WORK(1,2))
CALL LCMGET(KPSYS,'DRAGON-TXSC',SIGMA(0))
SUM=0.0D0
SUD=0.0D0
DO 160 IREG=1,NREGIO
FACTOR=VOLUME(IREG)
IBM=MATCOD(IREG)
SUM=SUM+SIGMA(IBM)*FACTOR*FLUXES(IREG,IGR,1)
> -WORK(IREG,1)*FACTOR*(1.0-WORK(IREG,2))
SUD=SUD+SIGMA(IBM)*FACTOR*WORK(IREG,2)
160 CONTINUE
COURIN(IGRCD,:2)=COURIN(IGRCD,:2)+REAL(SUM/SUD)
ENDIF
170 CONTINUE
175 CONTINUE
CALL LCMPUT(IPMAC2,'ALBS'//SUFF(INL),NGCOND*2,2,COURIN)
IF(IPRINT.GT.3) THEN
WRITE(6,900) SUFF(INL),(COURIN(IGR,1),IGR=1,NGCOND)
WRITE(6,'(/)')
ENDIF
180 CONTINUE
CALL LCMSIX(IPMAC2,' ',2)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(GAMMA,IMERGL,DIFHET,XSCAT,SIGMA,WORK,PRODUC,COURIN)
DEALLOCATE(IPOS,IJJ,NJJ)
RETURN
*
900 FORMAT(/10H EDIALB: P,A2,36H IN-CURRENTS (4J-/S) PER MACRO-GROUP,
> 5HS ARE/(1X,1P,10E13.5))
END
|