summaryrefslogtreecommitdiff
path: root/Dragon/src/DUO006.f
blob: c9ace05d61a74f19a3490ae0eeaaab30867263e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
*DECK DUO006
      SUBROUTINE DUO006(IPLIB,IPRINT,NISOT,NGRP,HREAC,IDIV,RHS,
     > FLUX,AFLUX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Processing one of the two microlibs and return the RHS matrix for
* the single reaction HREAC.
*
*Copyright:
* Copyright (C) 2013 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB   microlib.
* IPRINT  print parameter.
* NISOT   number of isotopes.
* NGRP    number of energy groups.
* HREAC   character*8 reaction name of the reaction to process.
* IDIV    type of divergence term processing (=0: no processing;
*         =1: direct processing; =2: adjoint processing;
*         =3: direct-adjoint processing).
*
*Parameters: output
* RHS     macroscopic cross-section matrix.
* FLUX    integrated direct flux.
* AFLUX   integrated adjoint flux.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPLIB
      INTEGER IPRINT,NISOT,NGRP,IDIV
      CHARACTER HREAC*8
      REAL RHS(NGRP,NGRP,NISOT),FLUX(NGRP,NISOT),AFLUX(NGRP,NISOT)
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) KPLIB
      CHARACTER HSMG*131
      DOUBLE PRECISION SUM
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: IHUSED
      REAL, ALLOCATABLE, DIMENSION(:) :: DENS,VOL,VECTOR,CHI,SIGS,DLK,
     > ALK,V,W
      REAL, ALLOCATABLE, DIMENSION(:,:) :: SCAT,RATE
      TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) :: IPISO
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(IHUSED(3,NISOT))
      ALLOCATE(DENS(NISOT),VOL(NISOT),VECTOR(NGRP),SCAT(NGRP,NGRP),
     > CHI(NGRP))
      ALLOCATE(IPISO(NISOT))
*----
*  FIND ISOTOPE POINTERS IN INPUT MICROLIB
*----
      CALL LIBIPS(IPLIB,NISOT,IPISO)
*----
*  COMPUTE THE RHS AND LHS MATRICES
*----
      CALL LCMGET(IPLIB,'ISOTOPESUSED',IHUSED)
      CALL LCMGET(IPLIB,'ISOTOPESDENS',DENS)
      CALL LCMGET(IPLIB,'ISOTOPESVOL',VOL)
      CALL LCMGET(IPLIB,'K-EFFECTIVE',ZKEFF)
      IF(IPRINT.GT.4) WRITE(6,'(35H DUO006: EFFECTIVE MULTIPLICATION F,
     > 6HACTOR=,1P,E12.5)') ZKEFF
      RHS(:NGRP,:NGRP,:NISOT)=0.0
      DO ISOT=1,NISOT
        IF(IPRINT.GT.4) WRITE(6,'(29H DUO006: PROCESSING ISOTOPE '',
     >  3A4,2H''.)') (IHUSED(I0,ISOT),I0=1,3)
        KPLIB=IPISO(ISOT) ! set ISOT-th isotope
        IF(.NOT.C_ASSOCIATED(KPLIB)) THEN
          WRITE(HSMG,'(18H DUO006: ISOTOPE '',3A4,7H'' (ISO=,I8,4H) IS,
     >    31H NOT AVAILABLE IN THE MICROLIB.)') (IHUSED(I0,ISOT),
     >    I0=1,3),ISOT
          CALL XABORT(HSMG)
        ENDIF
        CALL LCMGET(KPLIB,'NWT0',FLUX(1,ISOT))
        CALL LCMLEN(KPLIB,'NWAT0',ILON,ITYLCM)
        IF(ILON.NE.0) THEN
          CALL LCMGET(KPLIB,'NWAT0',AFLUX(1,ISOT))
        ELSE
          AFLUX(:NGRP,ISOT)=1.0
        ENDIF
        DO IGR=1,NGRP
          FLUX(IGR,ISOT)=FLUX(IGR,ISOT)*VOL(ISOT)
          AFLUX(IGR,ISOT)=AFLUX(IGR,ISOT)*VOL(ISOT)
        ENDDO
        CALL LCMLEN(KPLIB,HREAC,ILONG,ITYLCM)
        IF((ILONG.EQ.0).AND.(HREAC.NE.'LEAK')) CYCLE
        IF(HREAC.EQ.'SCAT00') THEN
          ALLOCATE(SIGS(NGRP))
          CALL XDRLGS(KPLIB,-1,IPRINT,0,0,1,NGRP,SIGS,SCAT,ITYPRO)
          DEALLOCATE(SIGS)
          DO IGR=1,NGRP
            DO JGR=1,NGRP
              RHS(JGR,IGR,ISOT)=RHS(JGR,IGR,ISOT)+DENS(ISOT)*
     >        SCAT(JGR,IGR)
            ENDDO
          ENDDO
        ELSE IF((HREAC.EQ.'NUSIGF').OR.(HREAC.EQ.'CHI')) THEN
          CALL LCMGET(KPLIB,'NUSIGF',VECTOR)
          CALL LCMGET(KPLIB,'CHI',CHI)
          DO IGR=1,NGRP
            DO JGR=1,NGRP
              RHS(JGR,IGR,ISOT)=RHS(JGR,IGR,ISOT)+DENS(ISOT)*CHI(JGR)*
     >        VECTOR(IGR)
            ENDDO
          ENDDO
        ELSE IF(HREAC(:3).EQ.'NWT') THEN
          WRITE(HSMG,'(8HDUO006: ,A8,25H IS A FORBIDDEN REACTION.)')
     >    HREAC
          CALL XABORT(HSMG)
        ELSE IF(HREAC.EQ.'LEAK') THEN
          ALLOCATE(RATE(NGRP,NGRP))
          RATE(:NGRP,:NGRP)=0.0
          CALL LCMLEN(KPLIB,'NUSIGF',ILON,ITYLCM)
          IF(ILON.GT.0) THEN
            CALL LCMGET(KPLIB,'NUSIGF',VECTOR)
            CALL LCMGET(KPLIB,'CHI',CHI)
            DO IGR=1,NGRP
              DO JGR=1,NGRP
                RATE(JGR,IGR)=RATE(JGR,IGR)-DENS(ISOT)*CHI(JGR)*
     >          VECTOR(IGR)/ZKEFF
              ENDDO
            ENDDO
          ENDIF
          ALLOCATE(SIGS(NGRP))
          CALL XDRLGS(KPLIB,-1,IPRINT,0,0,1,NGRP,SIGS,SCAT,ITYPRO)
          DEALLOCATE(SIGS)
          CALL LCMGET(KPLIB,'NTOT0',VECTOR)
          DO IGR=1,NGRP
            DO JGR=1,NGRP
              RATE(JGR,IGR)=RATE(JGR,IGR)-DENS(ISOT)*SCAT(JGR,IGR)
            ENDDO
            RATE(IGR,IGR)=RATE(IGR,IGR)+DENS(ISOT)*VECTOR(IGR)
          ENDDO
          IF(IDIV.EQ.1) THEN
            DO JGR=1,NGRP
              SUM=0.0D0
              DO IGR=1,NGRP
                SUM=SUM+RATE(JGR,IGR)*FLUX(IGR,ISOT)
              ENDDO
              RHS(JGR,JGR,ISOT)=-REAL(SUM)/FLUX(JGR,ISOT)
            ENDDO
          ELSE IF(IDIV.EQ.2) THEN
            DO IGR=1,NGRP
              SUM=0.0D0
              DO JGR=1,NGRP
                SUM=SUM+RATE(JGR,IGR)*AFLUX(JGR,ISOT)
              ENDDO
              RHS(IGR,IGR,ISOT)=-REAL(SUM)/AFLUX(IGR,ISOT)
            ENDDO
          ELSE IF(IDIV.EQ.3) THEN
            ALLOCATE(DLK(NGRP),ALK(NGRP))
            DO JGR=1,NGRP
              SUM=0.0D0
              DO IGR=1,NGRP
                SUM=SUM+RATE(JGR,IGR)*FLUX(IGR,ISOT)
              ENDDO
              DLK(JGR)=REAL(SUM)
            ENDDO
            DO IGR=1,NGRP
              SUM=0.0D0
              DO JGR=1,NGRP
                SUM=SUM+RATE(JGR,IGR)*AFLUX(JGR,ISOT)
              ENDDO
              ALK(IGR)=REAL(SUM)
            ENDDO
            ALLOCATE(V(NGRP),W(NGRP))
            CALL DUO005(NGRP,DLK,ALK,FLUX(1,ISOT),AFLUX(1,ISOT),V,W)
            DO IGR=1,NGRP
              DO JGR=1,NGRP
                RHS(IGR,JGR,ISOT)=RHS(IGR,JGR,ISOT)-V(IGR)-W(JGR)
              ENDDO
            ENDDO
            DEALLOCATE(W,V,ALK,DLK)
          ENDIF
          DEALLOCATE(RATE)
        ELSE
          CALL LCMGET(KPLIB,HREAC,VECTOR)
          DO IGR=1,NGRP
            RHS(IGR,IGR,ISOT)=RHS(IGR,IGR,ISOT)+DENS(ISOT)*VECTOR(IGR)
          ENDDO
        ENDIF
      ENDDO
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(IPISO)
      DEALLOCATE(CHI,SCAT,VECTOR,VOL,DENS)
      DEALLOCATE(IHUSED)
      RETURN
      END