1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
*DECK DUO006
SUBROUTINE DUO006(IPLIB,IPRINT,NISOT,NGRP,HREAC,IDIV,RHS,
> FLUX,AFLUX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Processing one of the two microlibs and return the RHS matrix for
* the single reaction HREAC.
*
*Copyright:
* Copyright (C) 2013 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB microlib.
* IPRINT print parameter.
* NISOT number of isotopes.
* NGRP number of energy groups.
* HREAC character*8 reaction name of the reaction to process.
* IDIV type of divergence term processing (=0: no processing;
* =1: direct processing; =2: adjoint processing;
* =3: direct-adjoint processing).
*
*Parameters: output
* RHS macroscopic cross-section matrix.
* FLUX integrated direct flux.
* AFLUX integrated adjoint flux.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLIB
INTEGER IPRINT,NISOT,NGRP,IDIV
CHARACTER HREAC*8
REAL RHS(NGRP,NGRP,NISOT),FLUX(NGRP,NISOT),AFLUX(NGRP,NISOT)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) KPLIB
CHARACTER HSMG*131
DOUBLE PRECISION SUM
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: IHUSED
REAL, ALLOCATABLE, DIMENSION(:) :: DENS,VOL,VECTOR,CHI,SIGS,DLK,
> ALK,V,W
REAL, ALLOCATABLE, DIMENSION(:,:) :: SCAT,RATE
TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) :: IPISO
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IHUSED(3,NISOT))
ALLOCATE(DENS(NISOT),VOL(NISOT),VECTOR(NGRP),SCAT(NGRP,NGRP),
> CHI(NGRP))
ALLOCATE(IPISO(NISOT))
*----
* FIND ISOTOPE POINTERS IN INPUT MICROLIB
*----
CALL LIBIPS(IPLIB,NISOT,IPISO)
*----
* COMPUTE THE RHS AND LHS MATRICES
*----
CALL LCMGET(IPLIB,'ISOTOPESUSED',IHUSED)
CALL LCMGET(IPLIB,'ISOTOPESDENS',DENS)
CALL LCMGET(IPLIB,'ISOTOPESVOL',VOL)
CALL LCMGET(IPLIB,'K-EFFECTIVE',ZKEFF)
IF(IPRINT.GT.4) WRITE(6,'(35H DUO006: EFFECTIVE MULTIPLICATION F,
> 6HACTOR=,1P,E12.5)') ZKEFF
RHS(:NGRP,:NGRP,:NISOT)=0.0
DO ISOT=1,NISOT
IF(IPRINT.GT.4) WRITE(6,'(29H DUO006: PROCESSING ISOTOPE '',
> 3A4,2H''.)') (IHUSED(I0,ISOT),I0=1,3)
KPLIB=IPISO(ISOT) ! set ISOT-th isotope
IF(.NOT.C_ASSOCIATED(KPLIB)) THEN
WRITE(HSMG,'(18H DUO006: ISOTOPE '',3A4,7H'' (ISO=,I8,4H) IS,
> 31H NOT AVAILABLE IN THE MICROLIB.)') (IHUSED(I0,ISOT),
> I0=1,3),ISOT
CALL XABORT(HSMG)
ENDIF
CALL LCMGET(KPLIB,'NWT0',FLUX(1,ISOT))
CALL LCMLEN(KPLIB,'NWAT0',ILON,ITYLCM)
IF(ILON.NE.0) THEN
CALL LCMGET(KPLIB,'NWAT0',AFLUX(1,ISOT))
ELSE
AFLUX(:NGRP,ISOT)=1.0
ENDIF
DO IGR=1,NGRP
FLUX(IGR,ISOT)=FLUX(IGR,ISOT)*VOL(ISOT)
AFLUX(IGR,ISOT)=AFLUX(IGR,ISOT)*VOL(ISOT)
ENDDO
CALL LCMLEN(KPLIB,HREAC,ILONG,ITYLCM)
IF((ILONG.EQ.0).AND.(HREAC.NE.'LEAK')) CYCLE
IF(HREAC.EQ.'SCAT00') THEN
ALLOCATE(SIGS(NGRP))
CALL XDRLGS(KPLIB,-1,IPRINT,0,0,1,NGRP,SIGS,SCAT,ITYPRO)
DEALLOCATE(SIGS)
DO IGR=1,NGRP
DO JGR=1,NGRP
RHS(JGR,IGR,ISOT)=RHS(JGR,IGR,ISOT)+DENS(ISOT)*
> SCAT(JGR,IGR)
ENDDO
ENDDO
ELSE IF((HREAC.EQ.'NUSIGF').OR.(HREAC.EQ.'CHI')) THEN
CALL LCMGET(KPLIB,'NUSIGF',VECTOR)
CALL LCMGET(KPLIB,'CHI',CHI)
DO IGR=1,NGRP
DO JGR=1,NGRP
RHS(JGR,IGR,ISOT)=RHS(JGR,IGR,ISOT)+DENS(ISOT)*CHI(JGR)*
> VECTOR(IGR)
ENDDO
ENDDO
ELSE IF(HREAC(:3).EQ.'NWT') THEN
WRITE(HSMG,'(8HDUO006: ,A8,25H IS A FORBIDDEN REACTION.)')
> HREAC
CALL XABORT(HSMG)
ELSE IF(HREAC.EQ.'LEAK') THEN
ALLOCATE(RATE(NGRP,NGRP))
RATE(:NGRP,:NGRP)=0.0
CALL LCMLEN(KPLIB,'NUSIGF',ILON,ITYLCM)
IF(ILON.GT.0) THEN
CALL LCMGET(KPLIB,'NUSIGF',VECTOR)
CALL LCMGET(KPLIB,'CHI',CHI)
DO IGR=1,NGRP
DO JGR=1,NGRP
RATE(JGR,IGR)=RATE(JGR,IGR)-DENS(ISOT)*CHI(JGR)*
> VECTOR(IGR)/ZKEFF
ENDDO
ENDDO
ENDIF
ALLOCATE(SIGS(NGRP))
CALL XDRLGS(KPLIB,-1,IPRINT,0,0,1,NGRP,SIGS,SCAT,ITYPRO)
DEALLOCATE(SIGS)
CALL LCMGET(KPLIB,'NTOT0',VECTOR)
DO IGR=1,NGRP
DO JGR=1,NGRP
RATE(JGR,IGR)=RATE(JGR,IGR)-DENS(ISOT)*SCAT(JGR,IGR)
ENDDO
RATE(IGR,IGR)=RATE(IGR,IGR)+DENS(ISOT)*VECTOR(IGR)
ENDDO
IF(IDIV.EQ.1) THEN
DO JGR=1,NGRP
SUM=0.0D0
DO IGR=1,NGRP
SUM=SUM+RATE(JGR,IGR)*FLUX(IGR,ISOT)
ENDDO
RHS(JGR,JGR,ISOT)=-REAL(SUM)/FLUX(JGR,ISOT)
ENDDO
ELSE IF(IDIV.EQ.2) THEN
DO IGR=1,NGRP
SUM=0.0D0
DO JGR=1,NGRP
SUM=SUM+RATE(JGR,IGR)*AFLUX(JGR,ISOT)
ENDDO
RHS(IGR,IGR,ISOT)=-REAL(SUM)/AFLUX(IGR,ISOT)
ENDDO
ELSE IF(IDIV.EQ.3) THEN
ALLOCATE(DLK(NGRP),ALK(NGRP))
DO JGR=1,NGRP
SUM=0.0D0
DO IGR=1,NGRP
SUM=SUM+RATE(JGR,IGR)*FLUX(IGR,ISOT)
ENDDO
DLK(JGR)=REAL(SUM)
ENDDO
DO IGR=1,NGRP
SUM=0.0D0
DO JGR=1,NGRP
SUM=SUM+RATE(JGR,IGR)*AFLUX(JGR,ISOT)
ENDDO
ALK(IGR)=REAL(SUM)
ENDDO
ALLOCATE(V(NGRP),W(NGRP))
CALL DUO005(NGRP,DLK,ALK,FLUX(1,ISOT),AFLUX(1,ISOT),V,W)
DO IGR=1,NGRP
DO JGR=1,NGRP
RHS(IGR,JGR,ISOT)=RHS(IGR,JGR,ISOT)-V(IGR)-W(JGR)
ENDDO
ENDDO
DEALLOCATE(W,V,ALK,DLK)
ENDIF
DEALLOCATE(RATE)
ELSE
CALL LCMGET(KPLIB,HREAC,VECTOR)
DO IGR=1,NGRP
RHS(IGR,IGR,ISOT)=RHS(IGR,IGR,ISOT)+DENS(ISOT)*VECTOR(IGR)
ENDDO
ENDIF
ENDDO
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(IPISO)
DEALLOCATE(CHI,SCAT,VECTOR,VOL,DENS)
DEALLOCATE(IHUSED)
RETURN
END
|