summaryrefslogtreecommitdiff
path: root/Dragon/src/DUO003.f
blob: 17227398b18727ac96ac65bfec06cd24ff629c3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
*DECK DUO003
      SUBROUTINE DUO003(IPLIB,IPRINT,NMIX,NISOT,NGRP,IDIV,ZKEFF,RHS,LHS,
     > FLUX,AFLUX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Processing one of the two microlibs and return isotope-dependent
* RHS and LHS matrices.
*
*Copyright:
* Copyright (C) 2013 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB   microlib.
* IPRINT  print parameter.
* NMIX    number of mixtures.
* NISOT   number of isotopes.
* NGRP    number of energy groups.
* IDIV    type of divergence term processing (=0: no processing;
*         =1: direct processing; =2: adjoint processing;
*         =3: direct-adjoint processing).
*
*Parameters: output
* ZKEFF   effective multiplication factor.
* RHS     absorption macroscopic cross-section matrix.
* LHS     production macroscopic cross-section matrix.
* FLUX    integrated direct flux.
* AFLUX   integrated adjoint flux.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPLIB
      INTEGER IPRINT,NMIX,NISOT,NGRP,IDIV
      REAL ZKEFF,RHS(NGRP,NGRP,NISOT+NMIX),LHS(NGRP,NGRP,NISOT+NMIX),
     > FLUX(NGRP,NISOT+NMIX),AFLUX(NGRP,NISOT+NMIX)
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) KPLIB
      CHARACTER HSMG*131
      DOUBLE PRECISION SUM
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: IMIX
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: IHUSED
      REAL, ALLOCATABLE, DIMENSION(:) :: DENS,VOL,TOTAL,ZNUSF,CHI,SIGS,
     > DLK,ALK,V,W
      REAL, ALLOCATABLE, DIMENSION(:,:) :: SCAT
      TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) :: IPISO
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(IHUSED(3,NISOT),IMIX(NISOT))
      ALLOCATE(DENS(NISOT),VOL(NISOT),TOTAL(NGRP),ZNUSF(NGRP),
     > CHI(NGRP),SCAT(NGRP,NGRP))
      ALLOCATE(IPISO(NISOT))
*----
*  FIND ISOTOPE POINTERS IN INPUT MICROLIB
*----
      CALL LIBIPS(IPLIB,NISOT,IPISO)
*----
*  COMPUTE THE RHS AND LHS MATRICES
*----
      CALL LCMGET(IPLIB,'ISOTOPESUSED',IHUSED)
      CALL LCMGET(IPLIB,'ISOTOPESMIX',IMIX)
      CALL LCMGET(IPLIB,'ISOTOPESDENS',DENS)
      CALL LCMGET(IPLIB,'ISOTOPESVOL',VOL)
      CALL LCMGET(IPLIB,'K-EFFECTIVE',ZKEFF)
      IF(IPRINT.GT.1) WRITE(6,'(35H DUO003: EFFECTIVE MULTIPLICATION F,
     > 6HACTOR=,1P,E12.5)') ZKEFF
      RHS(:NGRP,:NGRP,:NISOT+NMIX)=0.0
      LHS(:NGRP,:NGRP,:NISOT+NMIX)=0.0
      DO ISOT=1,NISOT
        IF(IPRINT.GT.4) WRITE(6,'(29H DUO003: PROCESSING ISOTOPE '',
     >  3A4,2H''.)') (IHUSED(I0,ISOT),I0=1,3)
        KPLIB=IPISO(ISOT) ! set ISOT-th isotope
        IF(.NOT.C_ASSOCIATED(KPLIB)) THEN
          WRITE(HSMG,'(18H DUO003: ISOTOPE '',3A4,7H'' (ISO=,I8,4H) IS,
     >    31H NOT AVAILABLE IN THE MICROLIB.)') (IHUSED(I0,ISOT),
     >    I0=1,3),ISOT
          CALL XABORT(HSMG)
        ENDIF
        CALL LCMGET(KPLIB,'NWT0',FLUX(1,ISOT))
        CALL LCMLEN(KPLIB,'NWAT0',ILON,ITYLCM)
        IF(ILON.NE.0) THEN
          CALL LCMGET(KPLIB,'NWAT0',AFLUX(1,ISOT))
        ELSE
          AFLUX(:NGRP,ISOT)=1.0
        ENDIF
        DO IGR=1,NGRP
          FLUX(IGR,ISOT)=FLUX(IGR,ISOT)*VOL(ISOT)
          AFLUX(IGR,ISOT)=AFLUX(IGR,ISOT)*VOL(ISOT)
        ENDDO
        CALL LCMGET(KPLIB,'NTOT0',TOTAL)
        CALL LCMLEN(KPLIB,'NUSIGF',ILON,ITYLCM)
        IF(ILON.GT.0) THEN
          CALL LCMGET(KPLIB,'NUSIGF',ZNUSF)
          CALL LCMGET(KPLIB,'CHI',CHI)
          DO IGR=1,NGRP
            DO JGR=1,NGRP
              LHS(JGR,IGR,ISOT)=LHS(JGR,IGR,ISOT)+DENS(ISOT)*CHI(JGR)*
     >        ZNUSF(IGR)
            ENDDO
          ENDDO
        ENDIF
        ALLOCATE(SIGS(NGRP))
        CALL XDRLGS(KPLIB,-1,IPRINT,0,0,1,NGRP,SIGS,SCAT,ITYPRO)
        DEALLOCATE(SIGS)
        DO IGR=1,NGRP
          DO JGR=1,NGRP
            RHS(JGR,IGR,ISOT)=RHS(JGR,IGR,ISOT)-DENS(ISOT)*SCAT(JGR,IGR)
          ENDDO
          RHS(IGR,IGR,ISOT)=RHS(IGR,IGR,ISOT)+DENS(ISOT)*TOTAL(IGR)
        ENDDO
      ENDDO
*----
*  INTRODUCE THE DIRECT OR ADJOINT DIVERGENCE COMPONENT IN THE RHS
*  MATRIX
*----
      DO IBM=1,NMIX
        IF(IDIV.EQ.1) THEN
          DO JGR=1,NGRP
            SUM=0.0D0
            FLUMIX=0.0
            AFLUMI=0.0
            DO ISOT=1,NISOT
              IF(IMIX(ISOT).EQ.IBM) THEN
                FLUMIX=FLUX(JGR,ISOT)
                AFLUMI=AFLUX(JGR,ISOT)
                DO IGR=1,NGRP
                  SUM=SUM+(RHS(JGR,IGR,ISOT)-LHS(JGR,IGR,ISOT)/ZKEFF)*
     >            FLUX(IGR,ISOT)
                ENDDO
              ENDIF
            ENDDO
            RHS(JGR,JGR,NISOT+IBM)=-REAL(SUM)/FLUMIX
            FLUX(JGR,NISOT+IBM)=FLUMIX
            AFLUX(JGR,NISOT+IBM)=AFLUMI
          ENDDO
        ELSE IF(IDIV.EQ.2) THEN
          DO IGR=1,NGRP
            SUM=0.0D0
            FLUMIX=0.0
            AFLUMI=0.0
            DO ISOT=1,NISOT
              IF(IMIX(ISOT).EQ.IBM) THEN
                FLUMIX=FLUX(IGR,ISOT)
                AFLUMI=AFLUX(IGR,ISOT)
                DO JGR=1,NGRP
                  SUM=SUM+(RHS(JGR,IGR,ISOT)-LHS(JGR,IGR,ISOT)/ZKEFF)*
     >            AFLUX(JGR,ISOT)
                ENDDO
              ENDIF
            ENDDO
            RHS(IGR,IGR,NISOT+IBM)=-REAL(SUM)/AFLUMI
            FLUX(IGR,NISOT+IBM)=FLUMIX
            AFLUX(IGR,NISOT+IBM)=AFLUMI
          ENDDO
        ELSE IF(IDIV.EQ.3) THEN
          ALLOCATE(DLK(NGRP),ALK(NGRP))
          DO JGR=1,NGRP
            SUM=0.0D0
            FLUMIX=0.0
            AFLUMI=0.0
            DO ISOT=1,NISOT
              IF(IMIX(ISOT).EQ.IBM) THEN
                FLUMIX=FLUX(JGR,ISOT)
                AFLUMI=AFLUX(JGR,ISOT)
                DO IGR=1,NGRP
                  SUM=SUM+(RHS(JGR,IGR,ISOT)-LHS(JGR,IGR,ISOT)/ZKEFF)*
     >            FLUX(IGR,ISOT)
                ENDDO
              ENDIF
            ENDDO
            DLK(JGR)=REAL(SUM)
            FLUX(JGR,NISOT+IBM)=FLUMIX
          ENDDO
          DO IGR=1,NGRP
            SUM=0.0D0
            FLUMIX=0.0
            AFLUMI=0.0
            DO ISOT=1,NISOT
              IF(IMIX(ISOT).EQ.IBM) THEN
                FLUMIX=FLUX(IGR,ISOT)
                AFLUMI=AFLUX(IGR,ISOT)
                DO JGR=1,NGRP
                  SUM=SUM+(RHS(JGR,IGR,ISOT)-LHS(JGR,IGR,ISOT)/ZKEFF)*
     >            AFLUX(JGR,ISOT)
                ENDDO
              ENDIF
            ENDDO
            ALK(IGR)=REAL(SUM)
            AFLUX(IGR,NISOT+IBM)=AFLUMI
          ENDDO
          ALLOCATE(V(NGRP),W(NGRP))
          CALL DUO005(NGRP,DLK,ALK,FLUX(1,NISOT+IBM),
     >    AFLUX(1,NISOT+IBM),V,W)
          DO IGR=1,NGRP
            DO JGR=1,NGRP
              RHS(IGR,JGR,NISOT+IBM)=RHS(IGR,JGR,NISOT+IBM)-
     >        V(IGR)-W(JGR)
            ENDDO
          ENDDO
          DEALLOCATE(W,V,ALK,DLK)
        ENDIF
      ENDDO
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(SCAT,CHI,ZNUSF,TOTAL,VOL,DENS)
      DEALLOCATE(IMIX,IHUSED)
      RETURN
      END