summaryrefslogtreecommitdiff
path: root/Dragon/src/DUO001.f
blob: a85c393b631e8ba3a1719a79df4b98fe9e1f0c51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
*DECK DUO001
      SUBROUTINE DUO001(IPMAC,IPRINT,NMIX,NGRP,NFIS,IDIV,ZKEFF,RHS,LHS,
     > FLUX,AFLUX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Processing one of the two macrolibs and return mixture-dependent
* RHS and LHS matrices.
*
*Copyright:
* Copyright (C) 2013 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPMAC   macrolib.
* IPRINT  print parameter.
* NMIX    number of mixtures.
* NGRP    number of energy groups.
* NFIS    number of fissile isotopes.
* IDIV    type of divergence term processing (=0: no processing;
*         =1: direct processing; =2: adjoint processing;
*         =3: direct-adjoint processing).
*
*Parameters: output
* ZKEFF   effective multiplication factor.
* RHS     absorption macroscopic cross-section matrix.
* LHS     production macroscopic cross-section matrix.
* FLUX    integrated direct flux.
* AFLUX   integrated adjoint flux.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPMAC
      INTEGER IPRINT,NMIX,NGRP,NFIS,IDIV
      REAL ZKEFF,RHS(NGRP,NGRP,NMIX),LHS(NGRP,NGRP,NMIX),
     > FLUX(NGRP,NMIX),AFLUX(NGRP,NMIX)
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) JPMAC,KPMAC
      DOUBLE PRECISION SUM
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS
      REAL, ALLOCATABLE, DIMENSION(:) :: VOL,GAR,GAR2,DLK,ALK,V,W
      REAL, ALLOCATABLE, DIMENSION(:,:) :: NUF
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: CHI
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(IJJ(NMIX),NJJ(NMIX),IPOS(NMIX))
      ALLOCATE(VOL(NMIX),GAR(NMIX),CHI(NMIX,NFIS,NGRP),NUF(NMIX,NFIS),
     > GAR2(NMIX*NGRP))
*----
*  COMPUTE THE RHS AND LHS MATRICES
*----
      RHS(:NGRP,:NGRP,:NMIX)=0.0
      LHS(:NGRP,:NGRP,:NMIX)=0.0
      CALL LCMGET(IPMAC,'K-EFFECTIVE',ZKEFF)
      IF(IPRINT.GT.1) WRITE(6,'(35H DUO001: EFFECTIVE MULTIPLICATION F,
     > 6HACTOR=,1P,E12.5)') ZKEFF
      CALL LCMGET(IPMAC,'VOLUME',VOL)
      JPMAC=LCMGID(IPMAC,'GROUP')
      DO IGR=1,NGRP
        KPMAC=LCMGIL(JPMAC,IGR)
        CALL LCMGET(KPMAC,'CHI',CHI(1,1,IGR))
      ENDDO
      DO IGR=1,NGRP
        KPMAC=LCMGIL(JPMAC,IGR)
        CALL LCMGET(KPMAC,'FLUX-INTG',GAR)
        DO IBM=1,NMIX
          FLUX(IGR,IBM)=GAR(IBM)/VOL(IBM)
        ENDDO
        CALL LCMLEN(KPMAC,'NWAT0',ILONG,ITYLCM)
        IF(ILONG.EQ.NMIX) THEN
          CALL LCMGET(KPMAC,'NWAT0',GAR)
          DO IBM=1,NMIX
            AFLUX(IGR,IBM)=GAR(IBM)
          ENDDO
        ELSE
          AFLUX(:NMIX,IBM)=1.0
        ENDIF
        CALL LCMGET(KPMAC,'NTOT0',GAR)
        CALL LCMGET(KPMAC,'SCAT00',GAR2)
        CALL LCMGET(KPMAC,'NJJS00',NJJ)
        CALL LCMGET(KPMAC,'IJJS00',IJJ)
        CALL LCMGET(KPMAC,'IPOS00',IPOS)
        DO IBM=1,NMIX
          IPOSDE=IPOS(IBM)
          DO JGR=IJJ(IBM),IJJ(IBM)-NJJ(IBM)+1,-1
            RHS(IGR,JGR,IBM)=RHS(IGR,JGR,IBM)-GAR2(IPOSDE) ! IGR <-- JGR
            IPOSDE=IPOSDE+1
          ENDDO
          RHS(IGR,IGR,IBM)=RHS(IGR,IGR,IBM)+GAR(IBM)
        ENDDO
        CALL LCMGET(KPMAC,'NUSIGF',NUF)
        DO IBM=1,NMIX
          DO IFIS=1,NFIS
            DO JGR=1,NGRP
              LHS(JGR,IGR,IBM)=LHS(JGR,IGR,IBM)+CHI(IBM,IFIS,JGR)*
     >        NUF(IBM,IFIS)
            ENDDO
          ENDDO
        ENDDO
      ENDDO
*----
*  INTRODUCE THE DIRECT OR ADJOINT DIVERGENCE COMPONENT IN THE RHS
*  MATRIX
*----
      DO IBM=1,NMIX
        IF(IDIV.EQ.1) THEN
          DO JGR=1,NGRP
            SUM=0.0D0
            DO IGR=1,NGRP
              SUM=SUM+(RHS(JGR,IGR,IBM)-LHS(JGR,IGR,IBM)/ZKEFF)*
     >        FLUX(IGR,IBM)
            ENDDO
            RHS(JGR,JGR,IBM)=RHS(JGR,JGR,IBM)-REAL(SUM)/FLUX(JGR,IBM)
          ENDDO
        ELSE IF(IDIV.EQ.2) THEN
          DO IGR=1,NGRP
            SUM=0.0D0
            DO JGR=1,NGRP
              SUM=SUM+(RHS(JGR,IGR,IBM)-LHS(JGR,IGR,IBM)/ZKEFF)*
     >        AFLUX(JGR,IBM)
            ENDDO
            RHS(IGR,IGR,IBM)=RHS(IGR,IGR,IBM)-REAL(SUM)/AFLUX(IGR,IBM)
          ENDDO
        ELSE IF(IDIV.EQ.3) THEN
          ALLOCATE(DLK(NGRP),ALK(NGRP))
          DO JGR=1,NGRP
            SUM=0.0D0
            DO IGR=1,NGRP
              SUM=SUM+(RHS(JGR,IGR,IBM)-LHS(JGR,IGR,IBM)/ZKEFF)*
     >        FLUX(IGR,IBM)
            ENDDO
            DLK(JGR)=REAL(SUM)
          ENDDO
          DO IGR=1,NGRP
            SUM=0.0D0
            DO JGR=1,NGRP
              SUM=SUM+(RHS(JGR,IGR,IBM)-LHS(JGR,IGR,IBM)/ZKEFF)*
     >        AFLUX(JGR,IBM)
            ENDDO
            ALK(IGR)=REAL(SUM)
          ENDDO
          ALLOCATE(V(NGRP),W(NGRP))
          CALL DUO005(NGRP,DLK,ALK,FLUX(1,IBM),AFLUX(1,IBM),V,W)
          DO IGR=1,NGRP
            DO JGR=1,NGRP
              RHS(IGR,JGR,IBM)=RHS(IGR,JGR,IBM)-V(IGR)-W(JGR)
            ENDDO
          ENDDO
          DEALLOCATE(W,V,ALK,DLK)
        ENDIF
      ENDDO
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(GAR2,NUF,CHI,GAR,VOL)
      DEALLOCATE(IPOS,NJJ,IJJ)
      RETURN
      END