1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
SUBROUTINE DOORS_TRI(IPTRK,NANIS,NREG,NMAT,NUN,MATCOD,VOL,SIGG,SUNKNO,FUNKNO)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Compute the source for the solution of diffusion or PN equations.
! Use a TRIVAC tracking.
!
!Copyright:
! Copyright (C) 2025 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! IPTRK pointer to the tracking LCM object.
! NANIS maximum cross section Legendre order (=0: isotropic).
! NREG number of regions.
! NMAT number of mixtures.
! NUN number of unknowns per energy group including net current.
! MATCOD mixture indices.
! VOL volumes. Volumes are included in SUNKNO.
! SIGG cross section.
! FUNKNO optional unknown vector. If not present, a flat flux
! approximation is assumed.
!
!Parameters: input/output
! SUNKNO integrated sources.
!
!-----------------------------------------------------------------------
!
USE GANLIB
!----
! SUBROUTINE ARGUMENTS
!----
TYPE(C_PTR) IPTRK
INTEGER NANIS,NREG,NMAT,NUN,MATCOD(NREG)
REAL VOL(NREG),SIGG(0:NMAT,NANIS+1),SUNKNO(NUN)
REAL, OPTIONAL :: FUNKNO(NUN)
!----
! LOCAL VARIABLES
!----
PARAMETER(NSTATE=40)
INTEGER JPAR(NSTATE)
!----
! RECOVER BIVAC SPECIFIC PARAMETERS.
!----
CALL LCMGET(IPTRK,'STATE-VECTOR',JPAR)
IF(JPAR(1).NE.NREG) CALL XABORT('DOORS_TRI: INCONSISTENT NREG.')
IF(JPAR(2).NE.NUN) CALL XABORT('DOORS_TRI: INCONSISTENT NUN.')
IF(NANIS.NE.0) CALL XABORT('DOORS_TRI: SPN NOT IMPLEMENTED.')
ITYPE=JPAR(6)
IF((ITYPE.EQ.2).OR.(ITYPE.EQ.5).OR.(ITYPE.EQ.7)) THEN
! Cartesian 1D, 2D or 3D geometry
CALL DOORS_TRIGSO(IPTRK,NREG,NMAT,NUN,MATCOD,VOL,SIGG,SUNKNO,FUNKNO)
ELSE IF((ITYPE.EQ.8).OR.(ITYPE.EQ.9)) THEN
! Hexagonal 2D or 3D geometry
CALL DOORS_TRIGSR(IPTRK,NREG,NMAT,NUN,MATCOD,SIGG,SUNKNO,FUNKNO)
ELSE
CALL XABORT('DOORS_TRI: GEOMETRY TYPE NOT AVAILABLE.')
ENDIF
RETURN
CONTAINS
SUBROUTINE DOORS_TRIGSO(IPTRK,NREG,NMAT,NUN,MATCOD,VOL,SIGG,SUNKNO,FUNKNO)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Source term calculation for a mixed-dual formulation of the finite
! element technique in a 3-D Cartesian geometry.
!
!-----------------------------------------------------------------------
!
USE GANLIB
!----
! SUBROUTINE ARGUMENTS
!----
TYPE(C_PTR) IPTRK
INTEGER NREG,NMAT,NUN,MATCOD(NREG)
REAL VOL(NREG),SIGG(0:NMAT),SUNKNO(NUN)
REAL, OPTIONAL :: FUNKNO(NUN)
!----
! LOCAL VARIABLES
!----
PARAMETER(NSTATE=40)
INTEGER IPAR(NSTATE)
CHARACTER HSMG*131
!----
! ALLOCATABLE ARRAYS
!----
INTEGER, ALLOCATABLE, DIMENSION(:) :: KN
!----
! RECOVER TRIVAC SPECIFIC PARAMETERS.
!----
CALL LCMGET(IPTRK,'STATE-VECTOR',IPAR)
ITYPE=IPAR(6)
IELEM=IPAR(9)
ICOL=IPAR(10)
LX=IPAR(14)
LY=IPAR(15)
LZ=IPAR(16)
ISCAT=IPAR(32)
IF((ITYPE.NE.2).AND.(ITYPE.NE.5).AND.(ITYPE.NE.7)) THEN
CALL XABORT('DOORS_TRIGSO: INVALID CARTESIAN GEOMETRY.')
ELSE IF((IELEM.LT.0).OR.(ICOL.GT.3)) THEN
CALL XABORT('DOORS_TRIGSO: RAVIART-THOMAS METHOD EXPECTED.')
ELSE IF(ISCAT.GT.1) THEN
WRITE(HSMG,'(56HDOORS_TRIGSO: MACRO-CALCULATION WITH ANISOTROPIC SCATTER, &
& 66HING CURRENTLY NOT IMPLEMENTED; USE SCAT 1 KEYWORD IN TRIVAT: DATA.)')
CALL XABORT(HSMG)
ELSE IF(LX*LY*LZ.NE.NREG) THEN
CALL XABORT('DOORS_TRIGSO: INVALID NREG.')
ENDIF
CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
ALLOCATE(KN(MAXKN))
CALL LCMGET(IPTRK,'KN',KN)
IF(PRESENT(FUNKNO)) THEN
NUM1=0
DO K=1,NREG
L=MATCOD(K)
IF(L.LE.0) CYCLE
IF(VOL(K).EQ.0.0) GO TO 10
GARS=SIGG(L)
DO I0=1,IELEM**3
IND1=KN(NUM1+1)+I0-1
SUNKNO(IND1)=SUNKNO(IND1)+FUNKNO(IND1)*VOL(K)*GARS
ENDDO ! I0
10 NUM1=NUM1+1+6*IELEM**2
ENDDO ! K
ELSE
! a flat flux is assumed
NUM1=0
DO K=1,NREG
L=MATCOD(K)
IF(L.LE.0) CYCLE
IF(VOL(K).EQ.0.0) GO TO 20
IND1=KN(NUM1+1)
SUNKNO(IND1)=SUNKNO(IND1)+VOL(K)*SIGG(L)
20 NUM1=NUM1+1+6*IELEM**2
ENDDO ! K
ENDIF
DEALLOCATE(KN)
RETURN
END SUBROUTINE DOORS_TRIGSO
!
SUBROUTINE DOORS_TRIGSR(IPTRK,NREG,NMAT,NUN,MATCOD,SIGG,SUNKNO,FUNKNO)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Source term calculation for a Thomas-Raviart-Schneider formulation of
! the finite element technique in a 3-D hexagonal geometry.
!
!-----------------------------------------------------------------------
!
USE GANLIB
!----
! SUBROUTINE ARGUMENTS
!----
TYPE(C_PTR) IPTRK
INTEGER NREG,NMAT,NUN,MATCOD(3,NREG/3)
REAL SIGG(0:NMAT),SUNKNO(NUN)
REAL, OPTIONAL :: FUNKNO(NUN)
!----
! LOCAL VARIABLES
!----
PARAMETER(NSTATE=40)
INTEGER IPAR(NSTATE)
CHARACTER HSMG*131
!----
! ALLOCATABLE ARRAYS
!----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IPERT
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: KN
REAL, ALLOCATABLE, DIMENSION(:) :: FRZ
REAL, ALLOCATABLE, DIMENSION(:,:) :: ZZ
!----
! RECOVER TRIVAC SPECIFIC PARAMETERS.
!----
CALL LCMGET(IPTRK,'STATE-VECTOR',IPAR)
ITYPE=IPAR(6)
IELEM=IPAR(9)
ICOL=IPAR(10)
LX=IPAR(14)
LZ=IPAR(16)
ISCAT=IPAR(32)
NBLOS=LX*LZ/3
IF((ITYPE.NE.8).AND.(ITYPE.NE.9)) THEN
CALL XABORT('DOORS_TRIGSR: INVALID HEXAGONAL GEOMETRY.')
ELSE IF((IELEM.LT.0).OR.(ICOL.GT.3)) THEN
CALL XABORT('DOORS_TRIGSR: RAVIART-THOMAS METHOD EXPECTED.')
ELSE IF(ISCAT.GT.1) THEN
WRITE(HSMG,'(56HDOORS_TRIGSR: MACRO-CALCULATION WITH ANISOTROPIC SCATTER, &
& 66HING CURRENTLY NOT IMPLEMENTED; USE SCAT 1 KEYWORD IN TRIVAT: DATA.)')
CALL XABORT(HSMG)
ELSE IF(3*NBLOS.NE.NREG) THEN
CALL XABORT('DOORS_TRIGSR: INVALID NREG.')
ENDIF
CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
ALLOCATE(ZZ(3,NBLOS),KN(NBLOS,MAXKN/NBLOS),IPERT(NBLOS),FRZ(NBLOS))
CALL LCMGET(IPTRK,'SIDE',SIDE)
CALL LCMGET(IPTRK,'ZZ',ZZ)
CALL LCMGET(IPTRK,'KN',KN)
CALL LCMGET(IPTRK,'IPERT',IPERT)
CALL LCMGET(IPTRK,'FRZ',FRZ)
NELEM=IELEM*(IELEM+1)
TTTT=0.5*SQRT(3.0)*SIDE*SIDE
IF(PRESENT(FUNKNO)) THEN
NUM=0
DO KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) CYCLE
NUM=NUM+1
L=MATCOD(1,IPERT(KEL))
IF(L.EQ.0) CYCLE
VOL0=TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL)
GARS=SIGG(L)
DO K3=0,IELEM-1
DO K2=0,IELEM-1
DO K1=0,IELEM-1
JND1=(NUM-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
JND2=(KN(NUM,1)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
JND3=(KN(NUM,2)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
SUNKNO(JND1)=SUNKNO(JND1)+FUNKNO(JND1)*VOL0*GARS
SUNKNO(JND2)=SUNKNO(JND2)+FUNKNO(JND2)*VOL0*GARS
SUNKNO(JND3)=SUNKNO(JND3)+FUNKNO(JND3)*VOL0*GARS
ENDDO ! K1
ENDDO ! K2
ENDDO ! K3
ENDDO ! KEL
ELSE
! a flat flux is assumed
NUM=0
DO KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) CYCLE
NUM=NUM+1
L=MATCOD(1,IPERT(KEL))
IF(L.EQ.0) CYCLE
VOL0=TTTT*ZZ(1,IPERT(KEL))*FRZ(KEL)
JND1=(NUM-1)*IELEM**3+1
JND2=(KN(NUM,1)-1)*IELEM**3+1
JND3=(KN(NUM,2)-1)*IELEM**3+1
SUNKNO(JND1)=SUNKNO(JND1)+VOL0*SIGG(L)
SUNKNO(JND2)=SUNKNO(JND2)+VOL0*SIGG(L)
SUNKNO(JND3)=SUNKNO(JND3)+VOL0*SIGG(L)
ENDDO ! KEL
ENDIF
DEALLOCATE(FRZ,IPERT,KN,ZZ)
END SUBROUTINE DOORS_TRIGSR
END SUBROUTINE DOORS_TRI
|