1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
*DECK DOORAB
SUBROUTINE DOORAB (CDOOR,JPSYS,NPSYS,IPTRK,IMPX,NGRP,NREG,NBMIX,
1 NANI,MAT,VOL)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Double heterogeneity treatment (part 1). Vectorial version.
*
*Copyright:
* Copyright (C) 2007 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* CDOOR name of the geometry/solution operator.
* JPSYS pointer to the PIJ LCM object (L_PIJ signature). JPSYS is a
* list of NGRP directories.
* NPSYS index array pointing to the JPSYS list component corresponding
* to each energy group. Set to zero if a group is not to be
* processed. Usually, NPSYS(I)=I.
* IPTRK pointer to the tracking (L_TRACK signature).
* IMPX print flag (equal to zero for no print).
* NGRP number of energy groups.
* NBMIX number of mixtures (NBMIX=max(MAT(i))).
* NANI number of Legendre orders (usually equal to one).
*
*Parameters: input/output
* NREG total number of regions for which specific values of the
* neutron flux and reaction rates are required on input and
* number of regions in the macro-geometry at output.
* MAT index-number of the mixture type assigned to each volume
* on input and index-number of the mixture type assigned
* to each macro-volume at output.
* VOL volume on input and macro-volumes at output.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
CHARACTER CDOOR*12
TYPE(C_PTR) JPSYS,IPTRK
INTEGER NPSYS(NGRP)
INTEGER IMPX,NGRP,NREG,NBMIX,NANI,MAT(NREG)
REAL VOL(NREG)
*----
* LOCAL VARIABLES
*----
PARAMETER(IOUT=6)
INTEGER IPAR(8)
TYPE(C_PTR) KPSYS,KPBIH
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: NS,IDIL,MIXGR,IBI,NCO
REAL, ALLOCATABLE, DIMENSION(:) :: RS,FRACT,VOLK,VOL2,SGAR,SGAS,
> RRRR,QKDEL,QKOLD,PKL,P1I,P1DI,P1KI,SIGA1
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: COEF
*---
* RECOVER DOUBLE HETEROGENEITY DATA
*----
CALL LCMSIX(IPTRK,'BIHET',1)
CALL LCMGET(IPTRK,'PARAM',IPAR)
IR1=IPAR(1)
IR2=IPAR(2)
NREG2=IPAR(3)
NG=IPAR(4)
NSMAX=IPAR(5)
IBIHET=IPAR(6)
MICRO=IPAR(7)
IQUA10=IPAR(8)
IF(IR1.NE.NBMIX) CALL XABORT('DOORAB: INVALID DATA IN TRACKING.')
IF(IBIHET.EQ.0) CALL XABORT('DOORAB: BIHET MODEL NOT SET.')
NMILG=IR2-IR1
ALLOCATE(NS(NG),IDIL(NMILG),MIXGR(NSMAX*NG*NMILG),IBI(NREG2))
ALLOCATE(RS(NG*(1+NSMAX)),FRACT(NG*IR2),VOLK(NG*NSMAX),
1 VOL2(NREG2))
CALL LCMGET(IPTRK,'NS',NS)
CALL LCMGET(IPTRK,'RS',RS)
CALL LCMGET(IPTRK,'FRACT',FRACT)
CALL LCMGET(IPTRK,'VOLK',VOLK)
CALL LCMGET(IPTRK,'IDIL',IDIL)
CALL LCMGET(IPTRK,'MIXGR',MIXGR)
CALL LCMGET(IPTRK,'VOLUME',VOL2)
CALL LCMGET(IPTRK,'IBI',IBI)
CALL LCMGET(IPTRK,'FRTM',FRTM)
CALL LCMSIX(IPTRK,' ',2)
IF(IMPX.GT.1) THEN
WRITE(IOUT,'(/43H DOORAB: RECOVER DOUBLE-HETEROGENEITY DATA.)')
WRITE(IOUT,'(35H NUMBER OF ORDINARY MIXTURES ,I4)') IR1
WRITE(IOUT,'(35H NUMBER OF COMPOSITE MIXTURES ,I4)') NMILG
WRITE(IOUT,'(35H NUMBER OF KIND OF GRAINS ,I4)') NG
WRITE(IOUT,'(35H NUMBER OF ORDINARY VOLUMES ,I4)') NREG2
WRITE(IOUT,'(35H NUMBER OF COMPOSITE VOLUMES ,I4)') NREG
WRITE(IOUT,'(35H TYPE OF MICRO VOLUMES (3 OR 4) ,I4)') MICRO
WRITE(IOUT,'(35H MAX. NUMBER OF VOLUMES PER GRAIN,I4)') NSMAX
WRITE(IOUT,'(35H QUADRATURE PARAMETER FOR GRAINS ,I4)') IQUA10
WRITE(IOUT,'(35H DOUBLE HETEROGENEITY MODEL ,I4)') IBIHET
IF(IBIHET.EQ.3.OR.IBIHET.EQ.4) THEN
WRITE(IOUT,'(35H MINIMUM GRAINS FRACTION ,F8.4)')
> FRTM
ENDIF
ENDIF
*----
* COMPUTE THE EQUIVALENT CROSS SECTIONS IN COMPOSITE REGIONS
*----
NB1=NBMIX+1
ALLOCATE(SGAR((NB1+NMILG)),SGAS((NB1+NMILG)*NANI))
SGAS(:(NB1+NMILG)*NANI)=0.0
DO 100 IGR=1,NGRP
IOFSET=NPSYS(IGR)
IF(IOFSET.NE.0) THEN
IF(IMPX.GT.10) WRITE(IOUT,'(/25H DOORAB: PROCESSING GROUP,I5,
> 6H WITH ,A,1H.)') IGR,CDOOR
KPSYS=LCMGIL(JPSYS,IOFSET)
CALL LCMGET(KPSYS,'DRAGON-TXSC',SGAR)
CALL LCMGET(KPSYS,'DRAGON-S0XSC',SGAS)
*----
* MORE MEMORY ALLOCATION
*----
IF((IBIHET.EQ.1).OR.(IBIHET.EQ.2)) THEN
ALLOCATE(NCO(NMILG))
ALLOCATE(RRRR(NMILG),QKDEL(NG*NSMAX*NMILG),
> QKOLD(NG*NSMAX*NMILG),PKL(NG*NSMAX*NSMAX*NMILG))
ALLOCATE(COEF(NMILG*(1+NG*NSMAX)**2))
ELSEIF ((IBIHET.EQ.3).OR.(IBIHET.EQ.4)) THEN
ALLOCATE(P1I(NG*NMILG),P1KI(NSMAX*NG*NMILG),
> P1DI(NG*NMILG),SIGA1(NG*NMILG))
P1I(:)=0
P1DI(:)=0
P1KI(:)=0
SIGA1(:)=0
ENDIF
*----
* DOUBLE HETEROGENEITY TREATMENT -- PART 1
*----
IF(IBIHET.EQ.1) THEN
* SANCHEZ-POMRANING MODEL.
CALL XDRH11(NBMIX,NMILG,NG,NSMAX,MICRO,IQUA10,NS,IDIL,
> MIXGR,RS,FRACT,VOLK,SGAR,SGAS,NCO,RRRR,QKOLD,QKDEL,PKL,
> COEF)
ELSEIF(IBIHET.EQ.2) THEN
* HEBERT MODEL.
CALL XDRH12(NBMIX,NMILG,NG,NSMAX,MICRO,IQUA10,NS,IDIL,
> MIXGR,RS,FRACT,VOLK,SGAR,SGAS,NCO,RRRR,QKDEL,PKL,COEF)
ELSEIF((IBIHET.EQ.3).OR.(IBIHET.EQ.4)) THEN
* SHE-LIU-SHI MODEL.
CALL XDRH13(NBMIX,NMILG,NG,NSMAX,IQUA10,FRTM,NS,IDIL,
> MIXGR,RS,FRACT,SGAR,SGAS,P1I,P1DI,P1KI,SIGA1)
ELSE
CALL XABORT('DOORAB: INVALID DOUBLE HETEROGENEITY MODEL.')
ENDIF
*
KPBIH=LCMDID(KPSYS,'BIHET')
CALL LCMPUT(KPBIH,'DRAGON-TXSC',1+IR2,2,SGAR)
CALL LCMPUT(KPBIH,'DRAGON-S0XSC',(1+IR2)*NANI,2,SGAS)
*
IF((IBIHET.EQ.1).OR.(IBIHET.EQ.2)) THEN
CALL LCMPUT(KPSYS,'NCO',NMILG,1,NCO)
CALL LCMPUT(KPSYS,'RRRR',NMILG,2,RRRR)
CALL LCMPUT(KPSYS,'QKOLD',NG*NSMAX*NMILG,2,QKOLD)
CALL LCMPUT(KPSYS,'QKDEL',NG*NSMAX*NMILG,2,QKDEL)
CALL LCMPUT(KPSYS,'PKL',NG*NSMAX*NSMAX*NMILG,2,PKL)
CALL LCMPUT(KPSYS,'COEF',NMILG*(1+NG*NSMAX)**2,4,COEF)
DEALLOCATE(NCO)
DEALLOCATE(COEF)
DEALLOCATE(PKL,QKOLD,QKDEL,RRRR)
ELSEIF((IBIHET.EQ.3).OR.(IBIHET.EQ.4)) THEN
CALL LCMPUT(KPSYS,'P1I',NG*NMILG,2,P1I)
CALL LCMPUT(KPSYS,'P1DI',NG*NMILG,2,P1DI)
CALL LCMPUT(KPSYS,'P1KI',NG*NSMAX*NMILG,2,P1KI)
CALL LCMPUT(KPSYS,'SIGA1',NG*NMILG,2,SIGA1)
DEALLOCATE(P1I,P1DI,P1KI,SIGA1)
ENDIF
ENDIF
100 CONTINUE
DEALLOCATE(SGAS,SGAR)
*----
* SET MACRO-GEOMETRY.
*----
NREG=NREG2
NBMIX=NBMIX+NMILG
DO I=1,NREG2
MAT(I)=IBI(I)
VOL(I)=VOL2(I)
ENDDO
DEALLOCATE(RS,FRACT,VOLK,VOL2)
DEALLOCATE(NS,IDIL,MIXGR,IBI)
RETURN
END
|