summaryrefslogtreecommitdiff
path: root/Dragon/src/BRERTS.f90
blob: 069a27b5b990de42c058acd22e1ef56ee1611b31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
SUBROUTINE BRERTS(IELEM,ICOL,NGRP,NLF,DELX,RCAT,JXM,JXP,IMPX,FHOMM,FHOMP)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Compute the Raviart-Thomas boundary fluxes for a single node in SPN
! theory.
!
!Copyright:
! Copyright (C) 2025 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! IELEM   Raviart-Thomas polynomial order.
! ICOL    Raviart-Thomas polynomial integration type.
! NGRP    number of energy groups.
! NLF     (NLF-1) is the SPN order (NLF is an even integer).
! DELX    node width along X-axis.
! RCAT    removal matrix (total minus scattering cross sections). The
!         second dimension is for primary neutrons. The (2*IL+1) factor
!         is included.
! JXM     left boundary currents.
! JXP     right boundary currents.
! IMPX    print flag.
!
!Parameters: output
! FHOMM   left boundary fluxes.
! FHOMP   right boundary fluxes.
!
!-----------------------------------------------------------------------
  USE GANLIB
  !
  !----
  !  SUBROUTINE ARGUMENTS
  !----
  INTEGER, INTENT(IN) :: IELEM,ICOL,NGRP,NLF,IMPX
  REAL, INTENT(IN) :: DELX
  REAL, DIMENSION(NGRP,NLF/2), INTENT(IN) :: JXM,JXP
  REAL(KIND=8), DIMENSION(NGRP,NGRP,NLF), INTENT(IN) :: RCAT
  REAL, DIMENSION(NGRP,NLF/2), INTENT(OUT) :: FHOMM,FHOMP
  !----
  !  LOCAL VARIABLES
  !----
  TYPE(C_PTR) IPTRK
  REAL QQ(5,5)
  REAL(KIND=8) FHOMM_IG,FHOMP_IG
  !----
  !  ALLOCATABLE ARRAYS
  !----
  INTEGER, DIMENSION(:), ALLOCATABLE :: IND
  REAL, DIMENSION(:,:), ALLOCATABLE :: R,V
  REAL, DIMENSION(:,:,:), ALLOCATABLE :: FUNKNO
  REAL(KIND=8), DIMENSION(:,:), ALLOCATABLE :: DXM,DXP,SYS
  REAL(KIND=8), DIMENSION(:,:,:), ALLOCATABLE :: RCATI
  !----
  !  RECOVER FINITE ELEMENT UNIT MATRICES.
  !----
  CALL LCMOP(IPTRK,'***DUMMY***',0,1,0)
  CALL BIVCOL(IPTRK,IMPX,IELEM,ICOL)
  ALLOCATE(V(IELEM+1,IELEM),R(IELEM+1,IELEM+1))
  CALL LCMSIX(IPTRK,'BIVCOL',1)
  CALL LCMGET(IPTRK,'V',V)
  CALL LCMGET(IPTRK,'R',R)
  CALL LCMSIX(IPTRK,' ',2)
  CALL LCMCL(IPTRK,2)
  DO I0=1,IELEM
    DO J0=1,IELEM
      QQ(I0,J0)=0.0
      DO K0=2,IELEM
        QQ(I0,J0)=QQ(I0,J0)+V(K0,I0)*V(K0,J0)/R(K0,K0)
      ENDDO
    ENDDO
  ENDDO
  !----
  !  INVERT THE RESIDUAL MATRIX.
  !----
  IF(MOD(NLF,2).NE.0) CALL XABORT('BRERTS: EVEN NLF EXPECTED.')
  ALLOCATE(RCATI(NGRP,NGRP,NLF),IND(NGRP))
  DO IL=2,NLF,2
    RCATI(:NGRP,:NGRP,IL)=RCAT(:NGRP,:NGRP,IL)
    CALL ALINVD(NGRP,RCATI(1,1,IL),NGRP,IER,IND)
    IF(IER.NE.0) CALL XABORT('BRERTS: SINGULAR MATRIX(1).')
  ENDDO
  DEALLOCATE(IND)
  !----
  !  LEAKAGE-REMOVAL SYSTEM MATRIX ASSEMBLY FOR THE RAVIART-THOMAS METHOD.
  !----
  FHOMM(:NGRP,:NLF/2)=0.0
  FHOMP(:NGRP,:NLF/2)=0.0
  L4=IELEM*NGRP
  INX=L4*NLF/2+1
  ALLOCATE(SYS(L4*NLF/2,INX))
  SYS(:L4*NLF/2,:INX)=0.0D0
  DO IL=0,NLF-1
    IF(MOD(IL,2).EQ.0) THEN
      !----
      !  EVEN PARITY EQUATION.
      !----
      DO IG=1,NGRP
        DO JG=1,NGRP
          DO J0=1,IELEM
            JND1=(IL/2)*L4+(IG-1)*IELEM+J0
            JND2=(IL/2)*L4+(JG-1)*IELEM+J0
            SYS(JND1,JND2)=SYS(JND1,JND2)+DELX*RCAT(IG,JG,IL+1) ! IG <-- JG
          ENDDO
        ENDDO
      ENDDO
    ELSE
      !----
      !  ODD PARITY EQUATION.
      !----
      DO IG=1,NGRP
        IF(IELEM.GT.1) THEN
          ! get rid of net current collocation points inside finite elements.
          DO JG=1,NGRP
            DO J0=1,IELEM
              JND1=((IL-1)/2)*L4+(IG-1)*IELEM+J0
              DO K0=1,IELEM
                IF(QQ(J0,K0).EQ.0.0) CYCLE
                KND2=((IL-1)/2)*L4+(JG-1)*IELEM+K0
                SYS(JND1,KND2)=SYS(JND1,KND2)+(REAL(IL)**2)*QQ(J0,K0)*RCATI(IG,JG,IL+1)/DELX
                IF(IL.LE.NLF-3) THEN
                  KND2=((IL+1)/2)*L4+(JG-1)*IELEM+K0
                  SYS(JND1,KND2)=SYS(JND1,KND2)+REAL(IL*(IL+1))*QQ(J0,K0)*RCATI(IG,JG,IL+1)/DELX
                ENDIF
                IF(IL.GE.3) THEN
                  KND2=((IL-3)/2)*L4+(JG-1)*IELEM+K0
                  SYS(JND1,KND2)=SYS(JND1,KND2)+REAL((IL-1)*(IL-2))*QQ(J0,K0)*RCATI(IG,JG,IL-1)/DELX
                  KND2=((IL-1)/2)*L4+(JG-1)*IELEM+K0
                  SYS(JND1,KND2)=SYS(JND1,KND2)+(REAL(IL-1)**2)*QQ(J0,K0)*RCATI(IG,JG,IL-1)/DELX
                ENDIF
              ENDDO
            ENDDO
          ENDDO
        ENDIF
        DO J0=1,IELEM
          JND1=((IL-1)/2)*L4+(IG-1)*IELEM+J0
          GJXM=JXM(IG,1)
          GJXP=JXP(IG,1)
          IF(IL.EQ.3) THEN
            GJXM=2.0*JXM(IG,1)+3.0*JXM(IG,2)
            GJXP=2.0*JXP(IG,1)+3.0*JXP(IG,2)
          ELSE IF(IL.EQ.5) THEN
            GJXM=4.0*JXM(IG,2)+5.0*JXM(IG,3)
            GJXP=4.0*JXP(IG,2)+5.0*JXP(IG,3)
          ELSE IF(IL.EQ.7) THEN
            GJXM=6.0*JXM(IG,3)+7.0*JXM(IG,4)
            GJXP=6.0*JXP(IG,3)+7.0*JXP(IG,4)
          ELSE IF(IL.GE.9) THEN
            CALL XABORT('BRERTS: SPN ORDER NOT IMPLEMENTED(1).')
          ENDIF
          SYS(JND1,INX)=SYS(JND1,INX)-(V(1,J0)*GJXM+V(IELEM+1,J0)*GJXP)
        ENDDO
      ENDDO
    ENDIF
  ENDDO
  !----
  !  SOLVE A ONE-NODE PROBLEM.
  !----
  CALL ALSBD(L4*NLF/2,1,SYS,IER,L4*NLF/2)
  IF(IER.NE.0) CALL XABORT('BRERTS: SINGULAR MATRIX(2).')
  ALLOCATE(FUNKNO(IELEM,NGRP,NLF/2))
  DO IL=1,NLF/2
    DO IG=1,NGRP
      DO J0=1,IELEM
        FUNKNO(J0,IG,IL)=REAL(SYS((IL-1)*L4+(IG-1)*IELEM+J0,INX))
      ENDDO
    ENDDO
  ENDDO
  DEALLOCATE(SYS,RCATI,R,V)
  !----
  !  COMPUTE SURFACE FLUX GRADIENTS USING ODD PARITY EQUATIONS
  !----
  ALLOCATE(DXM(NGRP,NLF/2),DXP(NGRP,NLF/2))
  IF(NLF.EQ.2) THEN
    DXM(:NGRP,1)=MATMUL(RCAT(:,:,2),JXM(:,1))*DELX
    DXP(:NGRP,1)=MATMUL(RCAT(:,:,2),JXP(:,1))*DELX
  ELSE IF(NLF.EQ.4) THEN
    DXM(:NGRP,2)=MATMUL(RCAT(:,:,4),JXM(:,2))*DELX/3.0
    DXP(:NGRP,2)=MATMUL(RCAT(:,:,4),JXP(:,2))*DELX/3.0
    DXM(:NGRP,1)=MATMUL(RCAT(:,:,2),JXM(:,1))*DELX-2.0*DXM(:NGRP,2)
    DXP(:NGRP,1)=MATMUL(RCAT(:,:,2),JXP(:,1))*DELX-2.0*DXP(:NGRP,2)
  ELSE IF(NLF.EQ.6) THEN
    DXM(:NGRP,3)=MATMUL(RCAT(:,:,6),JXM(:,3))*DELX/5.0
    DXP(:NGRP,3)=MATMUL(RCAT(:,:,6),JXP(:,3))*DELX/5.0
    DXM(:NGRP,2)=MATMUL(RCAT(:,:,4),JXM(:,2))*DELX/3.0-4.0*DXM(:NGRP,3)/3.0
    DXP(:NGRP,2)=MATMUL(RCAT(:,:,4),JXP(:,2))*DELX/3.0-4.0*DXP(:NGRP,3)/3.0
    DXM(:NGRP,1)=MATMUL(RCAT(:,:,2),JXM(:,1))*DELX-2.0*DXM(:NGRP,2)
    DXP(:NGRP,1)=MATMUL(RCAT(:,:,2),JXP(:,1))*DELX-2.0*DXP(:NGRP,2)
  ELSE
    CALL XABORT('BRERTS: SPN ORDER NOT IMPLEMENTED(2).')
  ENDIF
  !----
  !  COMPUTE NODAL SURFACE FLUXES
  !----
  DENOM=REAL(IELEM*(IELEM+1))
  DO IG=1,NGRP
    DO IL=1,NLF/2
      FHOMM_IG=0.0D0
      FHOMP_IG=0.0D0
      IF(ICOL.EQ.1) THEN
        ! NEM relations
        IF(IELEM.EQ.1) THEN
          FHOMM_IG=FUNKNO(1,IG,IL)+((1./3.)*DXM(IG,IL)+(1./6.)*DXP(IG,IL))
          FHOMP_IG=FUNKNO(1,IG,IL)-((1./6.)*DXM(IG,IL)+(1./3.)*DXP(IG,IL))
        ELSE IF(IELEM.EQ.2) THEN
          FHOMM_IG=FUNKNO(1,IG,IL)-(5.0*SQRT(3.)/6.)*FUNKNO(2,IG,IL)+((1./8.)*DXM(IG,IL)- &
          & (1./24.)*DXP(IG,IL))
          FHOMP_IG=FUNKNO(1,IG,IL)+(5.0*SQRT(3.)/6.)*FUNKNO(2,IG,IL)-(-(1./24.)*DXM(IG,IL)+ &
          & (1./8.)*DXP(IG,IL))
        ELSE IF(IELEM.EQ.3) THEN
          FHOMM_IG=FUNKNO(1,IG,IL)-(5.0*SQRT(3.)/6.)*FUNKNO(2,IG,IL)+(7.0*SQRT(5.)/10.)* &
          & FUNKNO(3,IG,IL)+((1./15.)*DXM(IG,IL)+(1./60.)*DXP(IG,IL))
          FHOMP_IG=FUNKNO(1,IG,IL)+(5.0*SQRT(3.)/6.)*FUNKNO(2,IG,IL)+(7.0*SQRT(5.)/10.)* &
          & FUNKNO(3,IG,IL)-((1./60.)*DXM(IG,IL)+(1./15.)*DXP(IG,IL))
        ELSE
          CALL XABORT('BRERTS: IELEM OVERFLOW.')
        ENDIF
      ELSE IF(ICOL.EQ.2) THEN
        ! MCFD relations
        FHOMM_IG=DXM(IG,IL)/DENOM
        FHOMP_IG=-DXP(IG,IL)/DENOM
        DO J0=1,IELEM
          FP=SQRT(REAL(2*J0-1))*(1.0-REAL(J0*(J0-1))/DENOM)
          FM=FP*(-1.0)**(J0-1)
          FHOMM_IG=FHOMM_IG+FP*(-1.0)**(J0-1)*FUNKNO(J0,IG,IL)
          FHOMP_IG=FHOMP_IG+FP*FUNKNO(J0,IG,IL)
        ENDDO
      ELSE IF(ICOL.EQ.3) THEN
        IF(IELEM.EQ.1) THEN
          FHOMM_IG=FUNKNO(1,IG,IL)+((1./4.)*DXM(IG,IL)+(1./4.)*DXP(IG,IL))
          FHOMP_IG=FUNKNO(1,IG,IL)-((1./4.)*DXM(IG,IL)+(1./4.)*DXP(IG,IL))
        ELSE IF(IELEM.EQ.2) THEN
          FHOMM_IG=FUNKNO(1,IG,IL)-SQRT(3.0)*FUNKNO(2,IG,IL)+((1./12.)*DXM(IG,IL)- &
          & (1./12.)*DXP(IG,IL))
          FHOMP_IG=FUNKNO(1,IG,IL)+SQRT(3.0)*FUNKNO(2,IG,IL)-(-(1./12.)*DXM(IG,IL)+ &
          & (1./12.)*DXP(IG,IL))
        ELSE IF(IELEM.EQ.3) THEN
          FHOMM_IG=FUNKNO(1,IG,IL)-(5.0*SQRT(3.)/6.0)*FUNKNO(2,IG,IL)+SQRT(5.)*FUNKNO(3,IG,IL)+ &
          & ((1./24.)*DXM(IG,IL)+(1./24.)*DXP(IG,IL))
          FHOMP_IG=FUNKNO(1,IG,IL)+(5.0*SQRT(3.)/6.0)*FUNKNO(2,IG,IL)+SQRT(5.)*FUNKNO(3,IG,IL)- &
          & ((1./24.)*DXM(IG,IL)+(1./24.)*DXP(IG,IL))
        ELSE
          CALL XABORT('BRERTS: IELEM OVERFLOW.')
        ENDIF
      ELSE
        CALL XABORT('BRERTS: ICOL OVERFLOW.')
      ENDIF
      FHOMM(IG,IL)=REAL(FHOMM_IG)
      FHOMP(IG,IL)=REAL(FHOMP_IG)
    ENDDO
    IF(IMPX.GT.0) THEN
      DO IL=1,NLF/2
        WRITE(6,'(14H BRERTS: ORDER,I2,38H RAVIART-THOMAS FLUX UNKNOWNS IN GROUP,I4,1H:/ &
        & (1P,12E12.4))') 2*IL-2,IG,FUNKNO(:IELEM,IG,IL)
        WRITE(6,'(14H BRERTS: ORDER,I2,40H RAVIART-THOMAS BOUNDARY FLUXES IN GROUP,I4,1H:/ &
        & (1P,12E12.4))') 2*IL-2,IG,FHOMM(IG,IL),FHOMP(IG,IL)
      ENDDO
    ENDIF
  ENDDO
  DEALLOCATE(DXP,DXM,FUNKNO)
END SUBROUTINE BRERTS