1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
SUBROUTINE BRERTS(IELEM,ICOL,NGRP,NLF,DELX,RCAT,JXM,JXP,IMPX,FHOMM,FHOMP)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Compute the Raviart-Thomas boundary fluxes for a single node in SPN
! theory.
!
!Copyright:
! Copyright (C) 2025 Ecole Polytechnique de Montreal
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version
!
!Author(s): A. Hebert
!
!Parameters: input
! IELEM Raviart-Thomas polynomial order.
! ICOL Raviart-Thomas polynomial integration type.
! NGRP number of energy groups.
! NLF (NLF-1) is the SPN order (NLF is an even integer).
! DELX node width along X-axis.
! RCAT removal matrix (total minus scattering cross sections). The
! second dimension is for primary neutrons. The (2*IL+1) factor
! is included.
! JXM left boundary currents.
! JXP right boundary currents.
! IMPX print flag.
!
!Parameters: output
! FHOMM left boundary fluxes.
! FHOMP right boundary fluxes.
!
!-----------------------------------------------------------------------
USE GANLIB
!
!----
! SUBROUTINE ARGUMENTS
!----
INTEGER, INTENT(IN) :: IELEM,ICOL,NGRP,NLF,IMPX
REAL, INTENT(IN) :: DELX
REAL, DIMENSION(NGRP,NLF/2), INTENT(IN) :: JXM,JXP
REAL(KIND=8), DIMENSION(NGRP,NGRP,NLF), INTENT(IN) :: RCAT
REAL, DIMENSION(NGRP,NLF/2), INTENT(OUT) :: FHOMM,FHOMP
!----
! LOCAL VARIABLES
!----
TYPE(C_PTR) IPTRK
REAL QQ(5,5)
REAL(KIND=8) FHOMM_IG,FHOMP_IG
!----
! ALLOCATABLE ARRAYS
!----
INTEGER, DIMENSION(:), ALLOCATABLE :: IND
REAL, DIMENSION(:,:), ALLOCATABLE :: R,V
REAL, DIMENSION(:,:,:), ALLOCATABLE :: FUNKNO
REAL(KIND=8), DIMENSION(:,:), ALLOCATABLE :: DXM,DXP,SYS
REAL(KIND=8), DIMENSION(:,:,:), ALLOCATABLE :: RCATI
!----
! RECOVER FINITE ELEMENT UNIT MATRICES.
!----
CALL LCMOP(IPTRK,'***DUMMY***',0,1,0)
CALL BIVCOL(IPTRK,IMPX,IELEM,ICOL)
ALLOCATE(V(IELEM+1,IELEM),R(IELEM+1,IELEM+1))
CALL LCMSIX(IPTRK,'BIVCOL',1)
CALL LCMGET(IPTRK,'V',V)
CALL LCMGET(IPTRK,'R',R)
CALL LCMSIX(IPTRK,' ',2)
CALL LCMCL(IPTRK,2)
DO I0=1,IELEM
DO J0=1,IELEM
QQ(I0,J0)=0.0
DO K0=2,IELEM
QQ(I0,J0)=QQ(I0,J0)+V(K0,I0)*V(K0,J0)/R(K0,K0)
ENDDO
ENDDO
ENDDO
!----
! INVERT THE RESIDUAL MATRIX.
!----
IF(MOD(NLF,2).NE.0) CALL XABORT('BRERTS: EVEN NLF EXPECTED.')
ALLOCATE(RCATI(NGRP,NGRP,NLF),IND(NGRP))
DO IL=2,NLF,2
RCATI(:NGRP,:NGRP,IL)=RCAT(:NGRP,:NGRP,IL)
CALL ALINVD(NGRP,RCATI(1,1,IL),NGRP,IER,IND)
IF(IER.NE.0) CALL XABORT('BRERTS: SINGULAR MATRIX(1).')
ENDDO
DEALLOCATE(IND)
!----
! LEAKAGE-REMOVAL SYSTEM MATRIX ASSEMBLY FOR THE RAVIART-THOMAS METHOD.
!----
FHOMM(:NGRP,:NLF/2)=0.0
FHOMP(:NGRP,:NLF/2)=0.0
L4=IELEM*NGRP
INX=L4*NLF/2+1
ALLOCATE(SYS(L4*NLF/2,INX))
SYS(:L4*NLF/2,:INX)=0.0D0
DO IL=0,NLF-1
IF(MOD(IL,2).EQ.0) THEN
!----
! EVEN PARITY EQUATION.
!----
DO IG=1,NGRP
DO JG=1,NGRP
DO J0=1,IELEM
JND1=(IL/2)*L4+(IG-1)*IELEM+J0
JND2=(IL/2)*L4+(JG-1)*IELEM+J0
SYS(JND1,JND2)=SYS(JND1,JND2)+DELX*RCAT(IG,JG,IL+1) ! IG <-- JG
ENDDO
ENDDO
ENDDO
ELSE
!----
! ODD PARITY EQUATION.
!----
DO IG=1,NGRP
IF(IELEM.GT.1) THEN
! get rid of net current collocation points inside finite elements.
DO JG=1,NGRP
DO J0=1,IELEM
JND1=((IL-1)/2)*L4+(IG-1)*IELEM+J0
DO K0=1,IELEM
IF(QQ(J0,K0).EQ.0.0) CYCLE
KND2=((IL-1)/2)*L4+(JG-1)*IELEM+K0
SYS(JND1,KND2)=SYS(JND1,KND2)+(REAL(IL)**2)*QQ(J0,K0)*RCATI(IG,JG,IL+1)/DELX
IF(IL.LE.NLF-3) THEN
KND2=((IL+1)/2)*L4+(JG-1)*IELEM+K0
SYS(JND1,KND2)=SYS(JND1,KND2)+REAL(IL*(IL+1))*QQ(J0,K0)*RCATI(IG,JG,IL+1)/DELX
ENDIF
IF(IL.GE.3) THEN
KND2=((IL-3)/2)*L4+(JG-1)*IELEM+K0
SYS(JND1,KND2)=SYS(JND1,KND2)+REAL((IL-1)*(IL-2))*QQ(J0,K0)*RCATI(IG,JG,IL-1)/DELX
KND2=((IL-1)/2)*L4+(JG-1)*IELEM+K0
SYS(JND1,KND2)=SYS(JND1,KND2)+(REAL(IL-1)**2)*QQ(J0,K0)*RCATI(IG,JG,IL-1)/DELX
ENDIF
ENDDO
ENDDO
ENDDO
ENDIF
DO J0=1,IELEM
JND1=((IL-1)/2)*L4+(IG-1)*IELEM+J0
GJXM=JXM(IG,1)
GJXP=JXP(IG,1)
IF(IL.EQ.3) THEN
GJXM=2.0*JXM(IG,1)+3.0*JXM(IG,2)
GJXP=2.0*JXP(IG,1)+3.0*JXP(IG,2)
ELSE IF(IL.EQ.5) THEN
GJXM=4.0*JXM(IG,2)+5.0*JXM(IG,3)
GJXP=4.0*JXP(IG,2)+5.0*JXP(IG,3)
ELSE IF(IL.EQ.7) THEN
GJXM=6.0*JXM(IG,3)+7.0*JXM(IG,4)
GJXP=6.0*JXP(IG,3)+7.0*JXP(IG,4)
ELSE IF(IL.GE.9) THEN
CALL XABORT('BRERTS: SPN ORDER NOT IMPLEMENTED(1).')
ENDIF
SYS(JND1,INX)=SYS(JND1,INX)-(V(1,J0)*GJXM+V(IELEM+1,J0)*GJXP)
ENDDO
ENDDO
ENDIF
ENDDO
!----
! SOLVE A ONE-NODE PROBLEM.
!----
CALL ALSBD(L4*NLF/2,1,SYS,IER,L4*NLF/2)
IF(IER.NE.0) CALL XABORT('BRERTS: SINGULAR MATRIX(2).')
ALLOCATE(FUNKNO(IELEM,NGRP,NLF/2))
DO IL=1,NLF/2
DO IG=1,NGRP
DO J0=1,IELEM
FUNKNO(J0,IG,IL)=REAL(SYS((IL-1)*L4+(IG-1)*IELEM+J0,INX))
ENDDO
ENDDO
ENDDO
DEALLOCATE(SYS,RCATI,R,V)
!----
! COMPUTE SURFACE FLUX GRADIENTS USING ODD PARITY EQUATIONS
!----
ALLOCATE(DXM(NGRP,NLF/2),DXP(NGRP,NLF/2))
IF(NLF.EQ.2) THEN
DXM(:NGRP,1)=MATMUL(RCAT(:,:,2),JXM(:,1))*DELX
DXP(:NGRP,1)=MATMUL(RCAT(:,:,2),JXP(:,1))*DELX
ELSE IF(NLF.EQ.4) THEN
DXM(:NGRP,2)=MATMUL(RCAT(:,:,4),JXM(:,2))*DELX/3.0
DXP(:NGRP,2)=MATMUL(RCAT(:,:,4),JXP(:,2))*DELX/3.0
DXM(:NGRP,1)=MATMUL(RCAT(:,:,2),JXM(:,1))*DELX-2.0*DXM(:NGRP,2)
DXP(:NGRP,1)=MATMUL(RCAT(:,:,2),JXP(:,1))*DELX-2.0*DXP(:NGRP,2)
ELSE IF(NLF.EQ.6) THEN
DXM(:NGRP,3)=MATMUL(RCAT(:,:,6),JXM(:,3))*DELX/5.0
DXP(:NGRP,3)=MATMUL(RCAT(:,:,6),JXP(:,3))*DELX/5.0
DXM(:NGRP,2)=MATMUL(RCAT(:,:,4),JXM(:,2))*DELX/3.0-4.0*DXM(:NGRP,3)/3.0
DXP(:NGRP,2)=MATMUL(RCAT(:,:,4),JXP(:,2))*DELX/3.0-4.0*DXP(:NGRP,3)/3.0
DXM(:NGRP,1)=MATMUL(RCAT(:,:,2),JXM(:,1))*DELX-2.0*DXM(:NGRP,2)
DXP(:NGRP,1)=MATMUL(RCAT(:,:,2),JXP(:,1))*DELX-2.0*DXP(:NGRP,2)
ELSE
CALL XABORT('BRERTS: SPN ORDER NOT IMPLEMENTED(2).')
ENDIF
!----
! COMPUTE NODAL SURFACE FLUXES
!----
DENOM=REAL(IELEM*(IELEM+1))
DO IG=1,NGRP
DO IL=1,NLF/2
FHOMM_IG=0.0D0
FHOMP_IG=0.0D0
IF(ICOL.EQ.1) THEN
! NEM relations
IF(IELEM.EQ.1) THEN
FHOMM_IG=FUNKNO(1,IG,IL)+((1./3.)*DXM(IG,IL)+(1./6.)*DXP(IG,IL))
FHOMP_IG=FUNKNO(1,IG,IL)-((1./6.)*DXM(IG,IL)+(1./3.)*DXP(IG,IL))
ELSE IF(IELEM.EQ.2) THEN
FHOMM_IG=FUNKNO(1,IG,IL)-(5.0*SQRT(3.)/6.)*FUNKNO(2,IG,IL)+((1./8.)*DXM(IG,IL)- &
& (1./24.)*DXP(IG,IL))
FHOMP_IG=FUNKNO(1,IG,IL)+(5.0*SQRT(3.)/6.)*FUNKNO(2,IG,IL)-(-(1./24.)*DXM(IG,IL)+ &
& (1./8.)*DXP(IG,IL))
ELSE IF(IELEM.EQ.3) THEN
FHOMM_IG=FUNKNO(1,IG,IL)-(5.0*SQRT(3.)/6.)*FUNKNO(2,IG,IL)+(7.0*SQRT(5.)/10.)* &
& FUNKNO(3,IG,IL)+((1./15.)*DXM(IG,IL)+(1./60.)*DXP(IG,IL))
FHOMP_IG=FUNKNO(1,IG,IL)+(5.0*SQRT(3.)/6.)*FUNKNO(2,IG,IL)+(7.0*SQRT(5.)/10.)* &
& FUNKNO(3,IG,IL)-((1./60.)*DXM(IG,IL)+(1./15.)*DXP(IG,IL))
ELSE
CALL XABORT('BRERTS: IELEM OVERFLOW.')
ENDIF
ELSE IF(ICOL.EQ.2) THEN
! MCFD relations
FHOMM_IG=DXM(IG,IL)/DENOM
FHOMP_IG=-DXP(IG,IL)/DENOM
DO J0=1,IELEM
FP=SQRT(REAL(2*J0-1))*(1.0-REAL(J0*(J0-1))/DENOM)
FM=FP*(-1.0)**(J0-1)
FHOMM_IG=FHOMM_IG+FP*(-1.0)**(J0-1)*FUNKNO(J0,IG,IL)
FHOMP_IG=FHOMP_IG+FP*FUNKNO(J0,IG,IL)
ENDDO
ELSE IF(ICOL.EQ.3) THEN
IF(IELEM.EQ.1) THEN
FHOMM_IG=FUNKNO(1,IG,IL)+((1./4.)*DXM(IG,IL)+(1./4.)*DXP(IG,IL))
FHOMP_IG=FUNKNO(1,IG,IL)-((1./4.)*DXM(IG,IL)+(1./4.)*DXP(IG,IL))
ELSE IF(IELEM.EQ.2) THEN
FHOMM_IG=FUNKNO(1,IG,IL)-SQRT(3.0)*FUNKNO(2,IG,IL)+((1./12.)*DXM(IG,IL)- &
& (1./12.)*DXP(IG,IL))
FHOMP_IG=FUNKNO(1,IG,IL)+SQRT(3.0)*FUNKNO(2,IG,IL)-(-(1./12.)*DXM(IG,IL)+ &
& (1./12.)*DXP(IG,IL))
ELSE IF(IELEM.EQ.3) THEN
FHOMM_IG=FUNKNO(1,IG,IL)-(5.0*SQRT(3.)/6.0)*FUNKNO(2,IG,IL)+SQRT(5.)*FUNKNO(3,IG,IL)+ &
& ((1./24.)*DXM(IG,IL)+(1./24.)*DXP(IG,IL))
FHOMP_IG=FUNKNO(1,IG,IL)+(5.0*SQRT(3.)/6.0)*FUNKNO(2,IG,IL)+SQRT(5.)*FUNKNO(3,IG,IL)- &
& ((1./24.)*DXM(IG,IL)+(1./24.)*DXP(IG,IL))
ELSE
CALL XABORT('BRERTS: IELEM OVERFLOW.')
ENDIF
ELSE
CALL XABORT('BRERTS: ICOL OVERFLOW.')
ENDIF
FHOMM(IG,IL)=REAL(FHOMM_IG)
FHOMP(IG,IL)=REAL(FHOMP_IG)
ENDDO
IF(IMPX.GT.0) THEN
DO IL=1,NLF/2
WRITE(6,'(14H BRERTS: ORDER,I2,38H RAVIART-THOMAS FLUX UNKNOWNS IN GROUP,I4,1H:/ &
& (1P,12E12.4))') 2*IL-2,IG,FUNKNO(:IELEM,IG,IL)
WRITE(6,'(14H BRERTS: ORDER,I2,40H RAVIART-THOMAS BOUNDARY FLUXES IN GROUP,I4,1H:/ &
& (1P,12E12.4))') 2*IL-2,IG,FHOMM(IG,IL),FHOMP(IG,IL)
ENDDO
ENDIF
ENDDO
DEALLOCATE(DXP,DXM,FUNKNO)
END SUBROUTINE BRERTS
|