summaryrefslogtreecommitdiff
path: root/Dragon/src/BRELLB.f
blob: 205a994ac4da58695df90dbe86c8d81d3f581c83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
*DECK BRELLB
      SUBROUTINE BRELLB(IPMAC1,NC,NG,NL,NMIX1,ENER,JXM,FHETXM,IPRINT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Implement the 1D Lefebvre-Lebigot reflector model.
*
*Copyright:
* Copyright (C) 2021 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert and V. Salino
*
*Parameters: input
* IPMAC1  nodal macrolib.
* NC      number of sn macrolibs (=2: Lefebvre-Lebigot method).
* NG      number of energy groups.
* NL      Legendre order of TOT1 and SCAT1 arrays (=1 for isotropic
*         scattering in LAB).
* NMIX1   number of mixtures in the nodal calculation.
* ENER    energy limits.
* JXM     left boundary currents.
* FHETXM  left boundary fluxes.
* IPRINT  edition flag.
*
*Reference:
*  Edwige Richebois, 'Calculs de coeur REP en transport 3D', PhD,
*  Universite Aix-Marseille, 1999 (p.193).
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPMAC1
      INTEGER NC,NG,NL,NMIX1,IPRINT
      REAL ENER(NG+1),JXM(NMIX1,NG,NC),FHETXM(NMIX1,NG,NL,NC)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (NSTATE=40)
      INTEGER ISTATE(NSTATE)
      REAL BF1BF2(2),CUR1BF1(2),CUR2BF1(2),SIGT(2),DIF(2)
      TYPE(C_PTR) JPMAC1,KPMAC1
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS
      REAL, ALLOCATABLE, DIMENSION(:) :: WORK
      REAL, ALLOCATABLE, DIMENSION(:,:) :: SCAT
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(IJJ(NMIX1),NJJ(NMIX1),IPOS(NMIX1),WORK(NG*NMIX1),
     1 SCAT(NG,NG))
*----
*  RECOVER FLUX, MACROSCOPIC CROSS SECTIONS AND DIFFUSION COEFFICIENTS
*----
      IF(NC.NE.2) CALL XABORT('BRELLB: NC=2 EXPECTED.')
      IF(NG.NE.2) CALL XABORT('BRELLB: NG=2 EXPECTED.')
      IF(NMIX1.NE.1) CALL XABORT('BRELLB: NMIX1=1 EXPECTED.')
*----
*  COMPUTE EQUIVALENT REFLECTOR
*----
      IBM=1
      DO IC=1,NC
        BF1BF2(IC)=FHETXM(IBM,2,1,IC)/FHETXM(IBM,1,1,IC)
        CUR1BF1(IC)=JXM(IBM,1,IC)/FHETXM(IBM,1,1,IC)
        CUR2BF1(IC)=JXM(IBM,2,IC)/FHETXM(IBM,1,1,IC)
      ENDDO
      DIF(1)=1.3
      DIF(2)=0.4
      PENTE=(CUR2BF1(1)-CUR2BF1(2))/(BF1BF2(1)-BF1BF2(2))
      ORDORI=CUR2BF1(1)-PENTE*BF1BF2(1)
      R1=CUR1BF1(1)
      R2=PENTE
      R3=-ORDORI
      IF(IPRINT.GT.0) WRITE(6,10) R1,R2,R3
      SIGT(2)=R2*R2/DIF(2)
      SIGSLW=(SQRT(DIF(2)/DIF(1))*R1+SQRT(DIF(1)*SIGT(2)))*R3/
     1 SQRT(DIF(1)*DIF(2))
      SIGT(1)=R1*R1/DIF(1)
      IF(SIGSLW.LT.0.0) THEN
        CALL XABORT('BRELLB: Negative fast SIGS00 XS.')
      ELSE IF(SIGT(1)-SIGSLW.LT.0.0) THEN
        CALL XABORT('BRELLB: Negative fast absorption XS.')
      ENDIF ;
      SCAT(:,:)=0.0
      SCAT(2,1)=SIGSLW
      IF(IPRINT.GT.0) THEN
        WRITE(6,'(/40H BRELLB: LEFEBVRE-LEBIGOT CROSS SECTIONS)')
        WRITE(6,'(/12H MIXTURE=  1)')
        WRITE(6,20) 'DIFF',DIF(:NG)
        WRITE(6,20) 'SIGT',SIGT(:NG)
        WRITE(6,20) 'SCAT',SCAT(:NG,:NG)
      ENDIF
*----
*  SAVE THE OUTPUT NODAL MACROLIB
*----
      IBM=1
      ISTATE(:)=0
      ISTATE(1)=NG
      ISTATE(2)=NMIX1
      ISTATE(3)=1
      ISTATE(9)=1  ! diffusion coefficient information
      CALL LCMPUT(IPMAC1,'STATE-VECTOR',NSTATE,1,ISTATE)
      CALL LCMPUT(IPMAC1,'ENERGY',NG+1,2,ENER)
      WORK(1)=1.0
      CALL LCMPUT(IPMAC1,'VOLUME',NMIX1,2,WORK)
      JPMAC1=LCMLID(IPMAC1,'GROUP',NG)
      DO IGR=1,NG
        KPMAC1=LCMDIL(JPMAC1,IGR)
        WORK(1)=1.0
        CALL LCMPUT(KPMAC1,'FLUX-INTG',NMIX1,2,WORK)
        CALL LCMPUT(KPMAC1,'NTOT0',NMIX1,2,SIGT(IGR))
        WORK(1)=0.0
        CALL LCMPUT(KPMAC1,'SIGW00',NMIX1,2,WORK)
        CALL LCMPUT(KPMAC1,'DIFF',NMIX1,2,DIF(IGR))
        IPOSDE=0
        DO J=1,NMIX1
          IBM=1
          J2=IGR
          J1=IGR
          DO JGR=1,NG
            IF(SCAT(IGR,JGR).NE.0.0) THEN
              J2=MAX(J2,JGR)
              J1=MIN(J1,JGR)
            ENDIF
          ENDDO
          NJJ(J)=J2-J1+1
          IJJ(J)=J2
          IPOS(J)=IPOSDE+1
          DO JGR=J2,J1,-1
            IPOSDE=IPOSDE+1
            IF(IPOSDE.GT.NG*NMIX1) CALL XABORT('BRELLB: SCAT OVERFLOW.')
            WORK(IPOSDE)=SCAT(IGR,JGR)
          ENDDO
        ENDDO
        CALL LCMPUT(KPMAC1,'SCAT00',IPOSDE,2,WORK)
        CALL LCMPUT(KPMAC1,'NJJS00',NMIX1,1,NJJ)
        CALL LCMPUT(KPMAC1,'IJJS00',NMIX1,1,IJJ)
        CALL LCMPUT(KPMAC1,'IPOS00',NMIX1,1,IPOS)
      ENDDO
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(SCAT,WORK,IPOS,NJJ,IJJ)
      RETURN
*
   10 FORMAT(12H BRELLB: R1=,1P,E12.4,4H R2=,E12.4,4H R3=,E12.4)
   20 FORMAT(1X,A9,1P,10E12.4,/(10X,10E12.4))
      END