1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
*DECK BREKOE
SUBROUTINE BREKOE(IPMAC1,NC,NG,NL,NMIX1,ISPH,B2,ENER,DC1,TOT1,
1 SCAT1,JXM,FHETXM,IPRINT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Implement the 1D Koebke reflector model.
*
*Copyright:
* Copyright (C) 2021 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert and V. Salino
*
*Parameters: input
* IPMAC1 nodal macrolib.
* NC number of sn macrolibs (=2: Koebke method).
* NG number of energy groups.
* NL Legendre order of TOT1 and SCAT1 arrays (=1 for isotropic
* scattering in LAB).
* NMIX1 number of mixtures in the nodal calculation.
* ISPH SPH flag (=0: use discontinuity factors; =1: use SPH factors).
* B2 buckling.
* ENER energy limits.
* TOT1 total cross sections.
* SCAT1 scattering P0 cross sections.
* JXM left boundary currents.
* FHETXM left boundary fluxes.
* IPRINT edition flag.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPMAC1
INTEGER NC,NG,NL,NMIX1,ISPH,IPRINT
REAL B2(NC),ENER(NG+1),DC1(NMIX1,NG,NC),TOT1(NMIX1,NG,NL,NC),
1 SCAT1(NMIX1,NG,NG,NL,NC),JXM(NMIX1,NG,NC),FHETXM(NMIX1,NG,NL,NC)
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40)
INTEGER ISTATE(NSTATE)
CHARACTER HADF*8
DOUBLE PRECISION R11,R21,R22,SIGR1,SIGR2,SIG21,D1,D2,A,B,C,F2
TYPE(C_PTR) JPMAC1,KPMAC1
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS
REAL, ALLOCATABLE, DIMENSION(:) :: WORK,FDX,DIF
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IJJ(NMIX1),NJJ(NMIX1),IPOS(NMIX1),WORK(NG*NMIX1))
*----
* RECOVER FLUX, MACROSCOPIC CROSS SECTIONS AND DIFFUSION COEFFICIENTS
*----
IF(NC.NE.2) CALL XABORT('BREKOE: NC=2 EXPECTED.')
IF(NG.NE.2) CALL XABORT('BREKOE: NG=2 EXPECTED.')
IF(NMIX1.NE.1) CALL XABORT('BREKOE: NMIX1=1 EXPECTED.')
*----
* COMPUTE EQUIVALENT REFLECTOR
*----
ALLOCATE(FDX(NG),DIF(NG))
IBM=1
R11=.5*(FHETXM(IBM,1,1,1)/JXM(IBM,1,1)+FHETXM(IBM,1,1,2)/
1 JXM(IBM,1,2))
R21=(FHETXM(IBM,2,1,1)*JXM(IBM,2,2)-FHETXM(IBM,2,1,2)*
1 JXM(IBM,2,1))/(JXM(IBM,1,1)*JXM(IBM,2,2)-JXM(IBM,1,2)*J
2 XM(IBM,2,1))
R22=(FHETXM(IBM,2,1,2)*JXM(IBM,1,1)-FHETXM(IBM,2,1,1)*
1 JXM(IBM,1,2))/(JXM(IBM,1,1)*JXM(IBM,2,2)-JXM(IBM,1,2)*
2 JXM(IBM,2,1))
IF(IPRINT.GT.0) WRITE(6,10) R11,R21,R22
SIGR1=.5*(TOT1(IBM,1,1,1)+TOT1(IBM,1,1,2)-SCAT1(IBM,1,1,1,1)-
1 SCAT1(IBM,1,1,1,2)+B2(1)*DC1(IBM,1,1)+B2(2)*DC1(IBM,1,2))
SIGR2=.5*(TOT1(IBM,2,1,1)+TOT1(IBM,2,1,2)-SCAT1(IBM,2,2,1,1)-
1 SCAT1(IBM,2,2,1,2)+B2(1)*DC1(IBM,2,1)+B2(2)*DC1(IBM,2,2))
SIG21=.5*(SCAT1(IBM,2,1,1,1)+SCAT1(IBM,2,1,1,2))
IF(IPRINT.GT.0) WRITE(6,20) SIGR1,SIGR2,SIG21
D1=1.0/(R11*R11*SIGR1)
A=(R21*SIGR1-R22*SIG21)*SQRT(SIGR1/SIGR2)/(R22*R22)
B=SIG21*SQRT(D1*SIGR2)
C=-R21*D1*SIGR2*SQRT(SIGR1*SIGR2)
F2=(-B+SQRT(B*B-4.0*A*C))/(2.0*A)
D2=F2*F2/(R22*R22*SIGR2)
IF(IPRINT.GT.0) WRITE(6,30) D1,D2,F2
FDX(1)=1.0
FDX(2)=REAL(F2)
DIF(1)=REAL(D1)
DIF(2)=REAL(D2)
IF(IPRINT.GT.0) THEN
WRITE(6,'(/37H BREKOE: KOEBKE DISCONTINUITY FACTORS)')
WRITE(6,'(/12H MIXTURE= 1)')
WRITE(6,'(6H FDX=,1P,10E13.5,/(6X,10E13.5))') FDX(:NG)
ENDIF
*----
* APPLY SPH FACTORS
*----
IF(ISPH.EQ.1) THEN
DO IGR=1,NG
TOT1(IBM,IGR,1,:2)=TOT1(IBM,IGR,1,:2)/FDX(IGR)
DIF(IGR)=DIF(IGR)/FDX(IGR)
DO JGR=1,NG
SCAT1(IBM,IGR,JGR,1,:2)=SCAT1(IBM,IGR,JGR,1,:2)/FDX(JGR)
ENDDO
ENDDO
ENDIF
IF(IPRINT.GT.0) THEN
WRITE(6,'(/38H BREKOE: KOEBKE DIFFUSION COEFFICIENTS)')
WRITE(6,'(/12H MIXTURE= 1)')
WRITE(6,'(6H DIFF=,1P,10E13.5,/(6X,10E13.5))') DIF(:NG)
ENDIF
*----
* SAVE THE OUTPUT NODAL MACROLIB
*----
IBM=1
ISTATE(:)=0
ISTATE(1)=NG
ISTATE(2)=NMIX1
ISTATE(3)=1
ISTATE(9)=1 ! diffusion coefficient information
IF(ISPH.EQ.0) ISTATE(12)=3 ! discontinuity factor information
IF(ISPH.EQ.1) ISTATE(14)=1 ! SPH factor information
CALL LCMPUT(IPMAC1,'STATE-VECTOR',NSTATE,1,ISTATE)
CALL LCMPUT(IPMAC1,'ENERGY',NG+1,2,ENER)
WORK(1)=1.0
CALL LCMPUT(IPMAC1,'VOLUME',NMIX1,2,WORK)
CALL LCMPUT(IPMAC1,'B2 B1HOM',1,2,B2)
IF(ISPH.EQ.0) THEN
CALL LCMSIX(IPMAC1,'ADF',1)
NTYPE=1
HADF='FD_B'
CALL LCMPUT(IPMAC1,'NTYPE',1,1,NTYPE)
CALL LCMPTC(IPMAC1,'HADF',8,HADF)
CALL LCMPUT(IPMAC1,HADF,NG,2,FDX)
CALL LCMSIX(IPMAC1,' ',2)
ELSE IF(ISPH.EQ.1) THEN
CALL LCMSIX(IPMAC1,'SPH',1)
ISTATE(:)=0
ISTATE(1)=4
ISTATE(2)=1
ISTATE(6)=1
ISTATE(7)=1
ISTATE(8)=NG
CALL LCMPUT(IPMAC1,'STATE-VECTOR',NSTATE,1,ISTATE)
CALL LCMSIX(IPMAC1,' ',2)
ENDIF
JPMAC1=LCMLID(IPMAC1,'GROUP',NG)
DO IGR=1,NG
KPMAC1=LCMDIL(JPMAC1,IGR)
WORK(1)=1.0
CALL LCMPUT(KPMAC1,'FLUX-INTG',NMIX1,2,WORK)
WORK(1)=0.5*(TOT1(IBM,IGR,1,1)+TOT1(IBM,IGR,1,2))
CALL LCMPUT(KPMAC1,'NTOT0',NMIX1,2,WORK)
WORK(1)=0.0
CALL LCMPUT(KPMAC1,'SIGW00',NMIX1,2,WORK)
CALL LCMPUT(KPMAC1,'DIFF',NMIX1,2,DIF(IGR))
IF(ISPH.EQ.1) THEN
WORK(1)=1.0/FDX(IGR)
CALL LCMPUT(KPMAC1,'NSPH',NMIX1,2,WORK)
ENDIF
IPOSDE=0
DO J=1,NMIX1
IBM=1
J2=IGR
J1=IGR
DO JGR=1,NG
IF(SCAT1(IBM,IGR,JGR,1,1)+SCAT1(IBM,IGR,JGR,1,2).NE.0.0) THEN
J2=MAX(J2,JGR)
J1=MIN(J1,JGR)
ENDIF
ENDDO
NJJ(J)=J2-J1+1
IJJ(J)=J2
IPOS(J)=IPOSDE+1
DO JGR=J2,J1,-1
IPOSDE=IPOSDE+1
IF(IPOSDE.GT.NG*NMIX1) CALL XABORT('BREKOE: SCAT OVERFLOW.')
WORK(IPOSDE)=0.5*(SCAT1(IBM,IGR,JGR,1,1)+
1 SCAT1(IBM,IGR,JGR,1,2))
ENDDO
ENDDO
CALL LCMPUT(KPMAC1,'SCAT00',IPOSDE,2,WORK)
CALL LCMPUT(KPMAC1,'NJJS00',NMIX1,1,NJJ)
CALL LCMPUT(KPMAC1,'IJJS00',NMIX1,1,IJJ)
CALL LCMPUT(KPMAC1,'IPOS00',NMIX1,1,IPOS)
ENDDO
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(DIF,FDX,WORK,IPOS,NJJ,IJJ)
RETURN
*
10 FORMAT(13H BREKOE: R11=,1P,E12.4,5H R21=,E12.4,5H R22=,E12.4)
20 FORMAT(15H BREKOE: SIGR1=,1P,E12.4,7H SIGR2=,E12.4,7H SIG21=,
1 E12.4)
30 FORMAT(12H BREKOE: D1=,1P,E12.4,4H D2=,E12.4,4H F2=,E12.4)
END
|