summaryrefslogtreecommitdiff
path: root/Dragon/src/BREKOE.f
blob: d98ca1fcc7c71f29db3b4c4db31a2e8aa6e9d1d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
*DECK BREKOE
      SUBROUTINE BREKOE(IPMAC1,NC,NG,NL,NMIX1,ISPH,B2,ENER,DC1,TOT1,
     1 SCAT1,JXM,FHETXM,IPRINT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Implement the 1D Koebke reflector model.
*
*Copyright:
* Copyright (C) 2021 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert and V. Salino
*
*Parameters: input
* IPMAC1  nodal macrolib.
* NC      number of sn macrolibs (=2: Koebke method).
* NG      number of energy groups.
* NL      Legendre order of TOT1 and SCAT1 arrays (=1 for isotropic
*         scattering in LAB).
* NMIX1   number of mixtures in the nodal calculation.
* ISPH    SPH flag (=0: use discontinuity factors; =1: use SPH factors).
* B2      buckling.
* ENER    energy limits.
* TOT1    total cross sections.
* SCAT1   scattering P0 cross sections.
* JXM     left boundary currents.
* FHETXM  left boundary fluxes.
* IPRINT  edition flag.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPMAC1
      INTEGER NC,NG,NL,NMIX1,ISPH,IPRINT
      REAL B2(NC),ENER(NG+1),DC1(NMIX1,NG,NC),TOT1(NMIX1,NG,NL,NC),
     1 SCAT1(NMIX1,NG,NG,NL,NC),JXM(NMIX1,NG,NC),FHETXM(NMIX1,NG,NL,NC)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (NSTATE=40)
      INTEGER ISTATE(NSTATE)
      CHARACTER HADF*8
      DOUBLE PRECISION R11,R21,R22,SIGR1,SIGR2,SIG21,D1,D2,A,B,C,F2
      TYPE(C_PTR) JPMAC1,KPMAC1
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS
      REAL, ALLOCATABLE, DIMENSION(:) :: WORK,FDX,DIF
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(IJJ(NMIX1),NJJ(NMIX1),IPOS(NMIX1),WORK(NG*NMIX1))
*----
*  RECOVER FLUX, MACROSCOPIC CROSS SECTIONS AND DIFFUSION COEFFICIENTS
*----
      IF(NC.NE.2) CALL XABORT('BREKOE: NC=2 EXPECTED.')
      IF(NG.NE.2) CALL XABORT('BREKOE: NG=2 EXPECTED.')
      IF(NMIX1.NE.1) CALL XABORT('BREKOE: NMIX1=1 EXPECTED.')
*----
*  COMPUTE EQUIVALENT REFLECTOR
*----
      ALLOCATE(FDX(NG),DIF(NG))
      IBM=1
      R11=.5*(FHETXM(IBM,1,1,1)/JXM(IBM,1,1)+FHETXM(IBM,1,1,2)/
     1 JXM(IBM,1,2))
      R21=(FHETXM(IBM,2,1,1)*JXM(IBM,2,2)-FHETXM(IBM,2,1,2)*
     1 JXM(IBM,2,1))/(JXM(IBM,1,1)*JXM(IBM,2,2)-JXM(IBM,1,2)*J
     2 XM(IBM,2,1))
      R22=(FHETXM(IBM,2,1,2)*JXM(IBM,1,1)-FHETXM(IBM,2,1,1)*
     1 JXM(IBM,1,2))/(JXM(IBM,1,1)*JXM(IBM,2,2)-JXM(IBM,1,2)*
     2 JXM(IBM,2,1))
      IF(IPRINT.GT.0) WRITE(6,10) R11,R21,R22
      SIGR1=.5*(TOT1(IBM,1,1,1)+TOT1(IBM,1,1,2)-SCAT1(IBM,1,1,1,1)-
     1         SCAT1(IBM,1,1,1,2)+B2(1)*DC1(IBM,1,1)+B2(2)*DC1(IBM,1,2))
      SIGR2=.5*(TOT1(IBM,2,1,1)+TOT1(IBM,2,1,2)-SCAT1(IBM,2,2,1,1)-
     1         SCAT1(IBM,2,2,1,2)+B2(1)*DC1(IBM,2,1)+B2(2)*DC1(IBM,2,2))
      SIG21=.5*(SCAT1(IBM,2,1,1,1)+SCAT1(IBM,2,1,1,2))
      IF(IPRINT.GT.0) WRITE(6,20) SIGR1,SIGR2,SIG21
      D1=1.0/(R11*R11*SIGR1)
      A=(R21*SIGR1-R22*SIG21)*SQRT(SIGR1/SIGR2)/(R22*R22)
      B=SIG21*SQRT(D1*SIGR2)
      C=-R21*D1*SIGR2*SQRT(SIGR1*SIGR2)
      F2=(-B+SQRT(B*B-4.0*A*C))/(2.0*A)
      D2=F2*F2/(R22*R22*SIGR2)
      IF(IPRINT.GT.0) WRITE(6,30) D1,D2,F2
      FDX(1)=1.0
      FDX(2)=REAL(F2)
      DIF(1)=REAL(D1)
      DIF(2)=REAL(D2)
      IF(IPRINT.GT.0) THEN
        WRITE(6,'(/37H BREKOE: KOEBKE DISCONTINUITY FACTORS)')
        WRITE(6,'(/12H MIXTURE=  1)')
        WRITE(6,'(6H  FDX=,1P,10E13.5,/(6X,10E13.5))') FDX(:NG)
      ENDIF
*----
*  APPLY SPH FACTORS
*----
      IF(ISPH.EQ.1) THEN
        DO IGR=1,NG
          TOT1(IBM,IGR,1,:2)=TOT1(IBM,IGR,1,:2)/FDX(IGR)
          DIF(IGR)=DIF(IGR)/FDX(IGR)
          DO JGR=1,NG
            SCAT1(IBM,IGR,JGR,1,:2)=SCAT1(IBM,IGR,JGR,1,:2)/FDX(JGR)
          ENDDO
        ENDDO
      ENDIF
      IF(IPRINT.GT.0) THEN
        WRITE(6,'(/38H BREKOE: KOEBKE DIFFUSION COEFFICIENTS)')
        WRITE(6,'(/12H MIXTURE=  1)')
        WRITE(6,'(6H DIFF=,1P,10E13.5,/(6X,10E13.5))') DIF(:NG)
      ENDIF
*----
*  SAVE THE OUTPUT NODAL MACROLIB
*----
      IBM=1
      ISTATE(:)=0
      ISTATE(1)=NG
      ISTATE(2)=NMIX1
      ISTATE(3)=1
      ISTATE(9)=1  ! diffusion coefficient information
      IF(ISPH.EQ.0) ISTATE(12)=3 ! discontinuity factor information
      IF(ISPH.EQ.1) ISTATE(14)=1 ! SPH factor information
      CALL LCMPUT(IPMAC1,'STATE-VECTOR',NSTATE,1,ISTATE)
      CALL LCMPUT(IPMAC1,'ENERGY',NG+1,2,ENER)
      WORK(1)=1.0
      CALL LCMPUT(IPMAC1,'VOLUME',NMIX1,2,WORK)
      CALL LCMPUT(IPMAC1,'B2  B1HOM',1,2,B2)
      IF(ISPH.EQ.0) THEN
        CALL LCMSIX(IPMAC1,'ADF',1)
          NTYPE=1
          HADF='FD_B'
          CALL LCMPUT(IPMAC1,'NTYPE',1,1,NTYPE)
          CALL LCMPTC(IPMAC1,'HADF',8,HADF)
          CALL LCMPUT(IPMAC1,HADF,NG,2,FDX)
        CALL LCMSIX(IPMAC1,' ',2)
      ELSE IF(ISPH.EQ.1) THEN
        CALL LCMSIX(IPMAC1,'SPH',1)
          ISTATE(:)=0
          ISTATE(1)=4
          ISTATE(2)=1
          ISTATE(6)=1
          ISTATE(7)=1
          ISTATE(8)=NG
          CALL LCMPUT(IPMAC1,'STATE-VECTOR',NSTATE,1,ISTATE)
        CALL LCMSIX(IPMAC1,' ',2)
      ENDIF
      JPMAC1=LCMLID(IPMAC1,'GROUP',NG)
      DO IGR=1,NG
        KPMAC1=LCMDIL(JPMAC1,IGR)
        WORK(1)=1.0
        CALL LCMPUT(KPMAC1,'FLUX-INTG',NMIX1,2,WORK)
        WORK(1)=0.5*(TOT1(IBM,IGR,1,1)+TOT1(IBM,IGR,1,2))
        CALL LCMPUT(KPMAC1,'NTOT0',NMIX1,2,WORK)
        WORK(1)=0.0
        CALL LCMPUT(KPMAC1,'SIGW00',NMIX1,2,WORK)
        CALL LCMPUT(KPMAC1,'DIFF',NMIX1,2,DIF(IGR))
        IF(ISPH.EQ.1) THEN
          WORK(1)=1.0/FDX(IGR)
          CALL LCMPUT(KPMAC1,'NSPH',NMIX1,2,WORK)
        ENDIF
        IPOSDE=0
        DO J=1,NMIX1
          IBM=1
          J2=IGR
          J1=IGR
          DO JGR=1,NG
           IF(SCAT1(IBM,IGR,JGR,1,1)+SCAT1(IBM,IGR,JGR,1,2).NE.0.0) THEN
              J2=MAX(J2,JGR)
              J1=MIN(J1,JGR)
           ENDIF
          ENDDO
          NJJ(J)=J2-J1+1
          IJJ(J)=J2
          IPOS(J)=IPOSDE+1
          DO JGR=J2,J1,-1
            IPOSDE=IPOSDE+1
            IF(IPOSDE.GT.NG*NMIX1) CALL XABORT('BREKOE: SCAT OVERFLOW.')
            WORK(IPOSDE)=0.5*(SCAT1(IBM,IGR,JGR,1,1)+
     1                        SCAT1(IBM,IGR,JGR,1,2))
          ENDDO
        ENDDO
        CALL LCMPUT(KPMAC1,'SCAT00',IPOSDE,2,WORK)
        CALL LCMPUT(KPMAC1,'NJJS00',NMIX1,1,NJJ)
        CALL LCMPUT(KPMAC1,'IJJS00',NMIX1,1,IJJ)
        CALL LCMPUT(KPMAC1,'IPOS00',NMIX1,1,IPOS)
      ENDDO
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(DIF,FDX,WORK,IPOS,NJJ,IJJ)
      RETURN
*
   10 FORMAT(13H BREKOE: R11=,1P,E12.4,5H R21=,E12.4,5H R22=,E12.4)
   20 FORMAT(15H BREKOE: SIGR1=,1P,E12.4,7H SIGR2=,E12.4,7H SIG21=,
     1 E12.4)
   30 FORMAT(12H BREKOE: D1=,1P,E12.4,4H D2=,E12.4,4H F2=,E12.4)
      END