1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
*DECK BREERM
SUBROUTINE BREERM(IPMAC1,NC,NG,NL,LX1,NMIX1,ITRIAL,IMIX,ICODE,
1 ISPH,ZKEFF,B2,ENER,VOL1,FLX1,DC1,TOT1,CHI1,SIGF1,SCAT1,JXM,JXP,
2 FHETXM,FHETXP,ADF1,NGET,ADFREF,IPRINT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Implement the 1D ERM-NEM reflector model.
*
*Copyright:
* Copyright (C) 2021 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPMAC1 nodal macrolib.
* NC number of sn macrolibs.
* NG number of energy groups.
* NL Legendre order of TOT1 and SCAT1 arrays (=1 for isotropic
* scattering in LAB).
* LX1 number of nodes in the reflector model.
* NMIX1 number of mixtures in the nodal calculation.
* ITRIAL type of expansion functions in the nodal calculation.
* (=1: polynomial; =2: hyperbolic).
* IMIX mix index of each node.
* ICODE physical albedo index on each side of the domain.
* ISPH SPH flag (=0: use discontinuity factors; =1: use SPH factors).
* ZKEFF effective multiplication factor.
* B2 buckling.
* ENER energy limits.
* VOL1 volumes.
* FLX1 averaged fluxes
* DC1 diffusion coefficients.
* TOT1 total cross sections.
* CHI1 fission spectra.
* SIGF1 nu*fission cross sections.
* SCAT1 scattering P0 cross sections.
* JXM left boundary currents.
* JXP right boundary currents.
* FHETXM left boundary fluxes.
* FHETXP right boundary fluxes.
* ADF1 assembly discontinuity factors from macrolib.
* NGET type of NGET normalization if discontinuity factors
* (=0: simple; =1: imposed ADF on fuel assembly; =2: recover
* fuel assembly ADF from input macrolib).
* ADFREF imposed ADF values on fuel assembly side.
* IPRINT edition flag.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPMAC1
INTEGER NC,NG,NL,LX1,NMIX1,ITRIAL(NG),IMIX(LX1),ICODE(2),ISPH,
1 NGET,IPRINT
REAL ZKEFF(NC),B2(NC),ENER(NG+1),VOL1(NMIX1,NC),FLX1(NMIX1,NG,NC),
1 DC1(NMIX1,NG,NC),TOT1(NMIX1,NG,NL,NC),CHI1(NMIX1,NG,NC),
2 SIGF1(NMIX1,NG,NC),SCAT1(NMIX1,NG,NG,NL,NC),JXM(NMIX1,NG,NC),
3 JXP(NMIX1,NG,NC),FHETXM(NMIX1,NG,NL,NC),FHETXP(NMIX1,NG,NL,NC),
4 ADF1(NMIX1,NG,NC),ADFREF(NG)
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40)
INTEGER ISTATE(NSTATE)
REAL SX(5),AA11(4,4),A11(5,5),Q(5)
CHARACTER(LEN=8) HADF(2)
LOGICAL LFISS
TYPE(C_PTR) JPMAC1,KPMAC1
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS
REAL, ALLOCATABLE, DIMENSION(:) :: WORK,ETA,VOL
REAL, ALLOCATABLE, DIMENSION(:,:) :: AB,ALPHA,FLX,DC,TOT,CHI,SIGF,
1 ADF,AFACTOR,BETA
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: FDXM,FDXP,SCAT
REAL(KIND=8), ALLOCATABLE, DIMENSION(:) :: TAU,B,X
REAL(KIND=8), ALLOCATABLE, DIMENSION(:,:) :: WORK2
REAL(KIND=8), ALLOCATABLE, DIMENSION(:,:,:) :: FHOMM,FHOMP
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(ETA(NG),ALPHA(5,NG),FDXM(NMIX1,NG,NG),FDXP(NMIX1,NG,NG),
1 AFACTOR(NG,NG),BETA(NG,NG),FHOMM(NC,NG,NMIX1),FHOMP(NC,NG,NMIX1))
ALLOCATE(VOL(NMIX1),FLX(NMIX1,NG),DC(NMIX1,NG),TOT(NMIX1,NG),
1 CHI(NMIX1,NG),SIGF(NMIX1,NG),SCAT(NMIX1,NG,NG),ADF(NMIX1,NG))
*----
* AVERAGE THE OUTPUT NODAL MACROLIB
*----
VOL(:)=0.0
FLX(:,:)=0.0
DC(:,:)=0.0
TOT(:,:)=0.0
CHI(:,:)=0.0
SIGF(:,:)=0.0
SCAT(:,:,:)=0.0
ADF(:,:)=0.0
DO IC=1,NC
DO IBM=1,NMIX1
VOL(IBM)=VOL(IBM)+VOL1(IBM,IC)
DO IGR=1,NG
FLX(IBM,IGR)=FLX(IBM,IGR)+FLX1(IBM,IGR,IC)
DC(IBM,IGR)=DC(IBM,IGR)+DC1(IBM,IGR,IC)
TOT(IBM,IGR)=TOT(IBM,IGR)+TOT1(IBM,IGR,1,IC)
CHI(IBM,IGR)=CHI(IBM,IGR)+CHI1(IBM,IGR,IC)
SIGF(IBM,IGR)=SIGF(IBM,IGR)+SIGF1(IBM,IGR,IC)
DO JGR=1,NG
SCAT(IBM,IGR,JGR)=SCAT(IBM,IGR,JGR)+SCAT1(IBM,IGR,JGR,1,IC)
ENDDO
ADF(IBM,IGR)=ADF(IBM,IGR)+ADF1(IBM,IGR,IC)
ENDDO
ENDDO
ENDDO
VOL(:)=VOL(:)/REAL(NC)
FLX(:,:)=FLX(:,:)/REAL(NC)
DC(:,:)=DC(:,:)/REAL(NC)
TOT(:,:)=TOT(:,:)/REAL(NC)
CHI(:,:)=CHI(:,:)/REAL(NC)
SIGF(:,:)=SIGF(:,:)/REAL(NC)
SCAT(:,:,:)=SCAT(:,:,:)/REAL(NC)
ADF(:,:)=ADF(:,:)/REAL(NC)
*----
* LOOP OVER CASES
*----
IF(ISPH.EQ.1) CALL XABORT('BREERM: SPH OPTION NOT IMPLEMENTED.')
J_FUEL=0
DO IC=1,NC
*----
* SET AND SOLVE NODAL SYSTEM
*----
J_FUEL=0
DO J=1,LX1
IBM=IMIX(J)
IF(IBM.EQ.0) CYCLE
LFISS=.FALSE.
DO IGR=1,NG
IF(SIGF(IBM,IGR).GT.0.0) LFISS=.TRUE.
ENDDO
IF(LFISS) THEN
J_FUEL=J
ALLOCATE(AB(4*NG,4*NG+1))
DO IGR=1,NG
DIFF=DC1(IBM,IGR,IC)
SIGR=TOT1(IBM,IGR,1,IC)+B2(IC)*DIFF-SCAT1(IBM,IGR,IGR,1,IC)
ETA(IGR)=VOL1(IBM,IC)*SQRT(SIGR/DIFF)
DO JGR=1,NG
IF(JGR.EQ.IGR) THEN
SIGT=SIGR-CHI1(IBM,IGR,IC)*SIGF1(IBM,IGR,IC)/ZKEFF(IC)
CALL BRESS1(ITRIAL(IGR),VOL1(IBM,IC),DIFF,SIGR,SIGT,
1 AA11)
ELSE
SIGT=-SCAT1(IBM,JGR,IGR,1,IC)-CHI1(IBM,JGR,IC)*
1 SIGF1(IBM,IGR,IC)/ZKEFF(IC)
CALL BRESS2(ITRIAL(IGR),VOL1(IBM,IC),DIFF,SIGR,SIGT,
1 AA11)
ENDIF
DO K1=1,4
DO K2=1,4
AB((JGR-1)*4+K1,(IGR-1)*4+K2)=AA11(K1,K2)
ENDDO
ENDDO
ENDDO
SX = (/0.0,0.0,0.0,JXM(IBM,IGR,IC),JXP(IBM,IGR,IC)/)
DO K1=1,4
AB((IGR-1)*4+K1,4*NG+1)=SX(K1+1)
ENDDO
ENDDO
CALL ALSB(4*NG,1,AB,IER,4*NG)
IF (IER.NE.0) CALL XABORT('BREERM: ALBS FAILURE(1).')
DO IGR=1,NG
ALPHA(1,IGR)=FLX1(IBM,IGR,IC)
DO I=1,4
ALPHA(I+1,IGR)=AB((IGR-1)*4+I,4*NG+1)
ENDDO
ENDDO
DEALLOCATE(AB)
ELSE
* use averaged cross section values for the reflector
ALLOCATE(AB(5*NG,5*NG+1))
DO IGR=1,NG
DIFF=DC(IBM,IGR)
SIGR=TOT(IBM,IGR)+B2(IC)*DIFF-SCAT(IBM,IGR,IGR)
ETA(IGR)=VOL(IBM)*SQRT(SIGR/DIFF)
DO JGR=1,NG
IF(JGR.EQ.IGR) THEN
SIGT=SIGR
CALL BRESS3(ITRIAL(IGR),VOL(IBM),DIFF,SIGR,SIGT,A11)
ELSE
SIGT=-SCAT(IBM,JGR,IGR)
CALL BRESS4(ITRIAL(IGR),VOL(IBM),DIFF,SIGR,SIGT,A11)
ENDIF
DO K1=1,5
DO K2=1,5
AB((JGR-1)*5+K1,(IGR-1)*5+K2)=A11(K1,K2)
ENDDO
ENDDO
ENDDO
SX = (/0.0,0.0,0.0,JXM(IBM,IGR,IC),JXP(IBM,IGR,IC)/)
DO K1=1,5
AB((IGR-1)*5+K1,5*NG+1)=SX(K1)
ENDDO
ENDDO
CALL ALSB(5*NG,1,AB,IER,5*NG)
IF (IER.NE.0) CALL XABORT('BREERM: ALBS FAILURE(2).')
DO IGR=1,NG
DO I=1,5
ALPHA(I,IGR)=AB((IGR-1)*5+I,5*NG+1)
ENDDO
ENDDO
DEALLOCATE(AB)
ENDIF
IF(IPRINT.GT.1) THEN
WRITE(6,'(/9H MIXTURE=,I5,6H CASE=,I3)') J,IC
WRITE(6,20) 'ALPHA',ALPHA(:5,:NG)
ENDIF
*----
* COMPUTE NODAL SURFACE FLUXES
*----
DO IGR=1,NG
IF (ITRIAL(IGR) == 1) THEN
Q(1) = ALPHA(3,IGR)/2.
FHOMM(IC,IGR,IBM)=-ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(1)
FHOMP(IC,IGR,IBM)=ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(1)
ELSE
Q(1) = ETA(IGR)/2.
Q(2) = SINH(Q(1))
Q(3) = ALPHA(3,IGR)/2.
Q(4) = ALPHA(4,IGR)*Q(2)
Q(5) = ALPHA(5,IGR)*(COSH(Q(1)) - (2*Q(2))/ETA(IGR))
FHOMM(IC,IGR,IBM)=-ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(3)-Q(4)+
1 Q(5)
FHOMP(IC,IGR,IBM)=ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(3)+Q(4)+
1 Q(5)
ENDIF
ENDDO
ENDDO
IF(IPRINT.GT.0) THEN
WRITE(6,'(/39H BREERM: NODAL SURFACE FLUXES FOR CASE=,I5)') IC
DO IBM=1,NMIX1
WRITE(6,'(/9H MIXTURE=,I5)') IBM
WRITE(6,20) 'FHOMM',FHOMM(IC,:NG,IBM)
WRITE(6,20) 'FHOMP',FHOMP(IC,:NG,IBM)
ENDDO
ENDIF
*----
* END OF LOOP OVER CASES
*----
ENDDO
*----
* COMPUTE DISCONTINUITY AND ALBEDO FACTORS
*----
AFACTOR(:,:)=0.0
DO IBM=1,NMIX1
IF(NC.EQ.1) THEN
! DF-NEM approach
FDXM(IBM,:,:)=0.0
FDXP(IBM,:,:)=0.0
DO IGR=1,NG
FDXM(IBM,IGR,IGR)=FHETXM(IBM,IGR,1,1)/REAL(FHOMM(1,IGR,IBM))
FDXP(IBM,IGR,IGR)=FHETXP(IBM,IGR,1,1)/REAL(FHOMP(1,IGR,IBM))
ENDDO
IF(IBM.EQ.NMIX1) THEN
DO IGR=1,NG
AFACTOR(IGR,IGR)=JXP(IBM,IGR,1)/REAL(FHOMP(1,IGR,IBM))
ENDDO
ENDIF
ELSE IF(NC.LT.NG) THEN
CALL XABORT('BREERM: DEGENERATE SYSTEM')
ELSE IF(NC.EQ.NG) THEN
! ERM-NEM approach: linear system resolution
ALLOCATE(WORK2(NC,2*NG))
DO IGR=1,NG
DO IC=1,NC
WORK2(IC,IGR)=FHOMM(IC,IGR,IBM)
WORK2(IC,NG+IGR)=FHETXM(IBM,IGR,1,IC)
ENDDO
ENDDO
CALL ALSBD(NC,NG,WORK2,IER,NC)
IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(1).')
DO IGR=1,NG
DO IC=1,NC
FDXM(IBM,IGR,IC)=REAL(WORK2(IC,NG+IGR))
ENDDO
ENDDO
DO IGR=1,NG
DO IC=1,NC
WORK2(IC,IGR)=FHOMP(IC,IGR,IBM)
WORK2(IC,NG+IGR)=FHETXP(IBM,IGR,1,IC)
ENDDO
ENDDO
CALL ALSBD(NC,NG,WORK2,IER,NC)
IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(2).')
DO IGR=1,NG
DO IC=1,NC
FDXP(IBM,IGR,IC)=REAL(WORK2(IC,NG+IGR))
ENDDO
ENDDO
IF(IBM.EQ.NMIX1) THEN
DO IGR=1,NG
DO IC=1,NC
WORK2(IC,IGR)=FHOMP(IC,IGR,IBM)
WORK2(IC,NG+IGR)=JXP(IBM,IGR,IC)
ENDDO
ENDDO
CALL ALSBD(NC,NG,WORK2,IER,NC)
IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(3).')
DO IGR=1,NG
DO JGR=1,NG
AFACTOR(IGR,JGR)=REAL(WORK2(JGR,NG+IGR))
ENDDO
ENDDO
ENDIF
DEALLOCATE(WORK2)
ELSE IF(NC.GE.NG) THEN
! ERM-NEM approach: pseudo inversion
ALLOCATE(TAU(NG),B(NC),X(NG))
CALL ALST2F(NC,NC,NG,FHOMM(1,1,IBM),TAU)
DO IGR=1,NG
B(:)=FHETXM(IBM,IGR,1,:)
CALL ALST2S(NC,NC,NG,FHOMM(1,1,IBM),TAU,B,X)
FDXM(IBM,IGR,:)=REAL(X(:))
ENDDO
CALL ALST2F(NC,NC,NG,FHOMP(1,1,IBM),TAU)
DO IGR=1,NG
B(:)=FHETXP(IBM,IGR,1,:)
CALL ALST2S(NC,NC,NG,FHOMP(1,1,IBM),TAU,B,X)
FDXP(IBM,IGR,:)=REAL(X(:))
ENDDO
IF(IBM.EQ.NMIX1) THEN
DO IGR=1,NG
B(:)=JXP(IBM,IGR,:)
CALL ALST2S(NC,NC,NG,FHOMP(1,1,IBM),TAU,B,X)
AFACTOR(IGR,:)=REAL(X(:))
ENDDO
ENDIF
DEALLOCATE(X,B,TAU)
ENDIF
ENDDO
IF(IPRINT.GT.0) THEN
WRITE(6,'(/48H BREERM: DISCONTINUITY FACTORS BEFORE NORMALIZAT,
1 3HION)')
DO IBM=1,NMIX1
WRITE(6,'(/9H MIXTURE=,I5)') IBM
WRITE(6,20) 'FDXM',FDXM(IBM,:NG,:NG)
WRITE(6,20) 'FDXP',FDXP(IBM,:NG,:NG)
ENDDO
WRITE(6,'(/31H BREERM: DIFFUSION COEFFICIENTS)')
DO IBM=1,NMIX1
WRITE(6,'(/9H MIXTURE=,I5)') IBM
WRITE(6,20) 'DIFF',DC(IBM,:NG)
ENDDO
ENDIF
*----
* COMPUTE ALBEDOS
*----
IF(ICODE(2).NE.0) THEN
BETA(:,:)=0.0
DO IGR=1,NG
DO JGR=1,NG
BETA(IGR,JGR)=(1.0-2.0*AFACTOR(IGR,JGR))/(1.0+2.0*
1 AFACTOR(IGR,JGR))
ENDDO
ENDDO
IF(IPRINT.GT.0) THEN
WRITE(6,'(/16H BREERM: ALBEDOS)')
WRITE(6,20) 'BETA',BETA(:NG,:NG)
ENDIF
ENDIF
*----
* NGET NORMALIZATION OF THE DISCONTINUITY FACTORS
*----
ALLOCATE(WORK2(NG,2*NG))
DO J=1,LX1-1
IBM=IMIX(J)
IBMP=IMIX(J+1)
IF((IBM.EQ.0).OR.(IBMP.EQ.0)) CYCLE
DO IGR=1,NG
DO JGR=1,NG
WORK2(IGR,JGR)=FDXP(IBM,IGR,JGR)
WORK2(IGR,NG+JGR)=FDXM(IBMP,IGR,JGR)
ENDDO
ENDDO
CALL ALSBD(NG,NG,WORK2,IER,NG)
IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(3).')
DO IGR=1,NG
! impose the adf on the fuel assembly side
IF((J.EQ.J_FUEL).AND.(NGET.EQ.1)) THEN
FNORM=ADFREF(IGR)
ELSE IF((J.EQ.J_FUEL).AND.(NGET.EQ.2)) THEN
FNORM=ADF(IBM,IGR)
ELSE
FNORM=FDXP(IBM,IGR,IGR)
ENDIF
FDXP(IBM,IGR,:)=0.0
FDXP(IBM,IGR,IGR)=FNORM
DO JGR=1,NG
FDXM(IBMP,IGR,JGR)=REAL(WORK2(IGR,NG+JGR))*FNORM
ENDDO
ENDDO
ENDDO
DEALLOCATE(WORK2)
IF(J_FUEL.GT.0) THEN
DO J=J_FUEL,1,-1
IBM=IMIX(J)
IF(IBM.EQ.0) CYCLE
DO IGR=1,NG
FNORM=FDXP(IBM,IGR,IGR)/FDXM(IBM,IGR,IGR)
DO JGR=1,NG
IF(J>1) THEN
IBMM=IMIX(J-1)
IF(IBMM.GT.0) FDXP(IBMM,IGR,JGR)=FDXP(IBMM,IGR,JGR)*FNORM
ENDIF
FDXM(IBM,IGR,JGR)=FDXM(IBM,IGR,JGR)*FNORM
ENDDO
ENDDO
ENDDO
ENDIF
DO J=J_FUEL+1,LX1
IBM=IMIX(J)
IF(IBM.EQ.0) CYCLE
DO IGR=1,NG
FNORM=FDXM(IBM,IGR,IGR)/FDXP(IBM,IGR,IGR)
DO JGR=1,NG
IF(J<LX1) THEN
IBMP=IMIX(J+1)
IF(IBMP.GT.0) FDXM(IBMP,IGR,JGR)=FDXM(IBMP,IGR,JGR)*FNORM
ENDIF
FDXP(IBM,IGR,JGR)=FDXP(IBM,IGR,JGR)*FNORM
ENDDO
ENDDO
ENDDO
IF(IPRINT.GT.0) THEN
WRITE(6,'(/48H BREERM: DISCONTINUITY FACTORS AFTER NGET NORMAL,
1 7HIZATION)')
DO IBM=1,NMIX1
WRITE(6,'(/9H MIXTURE=,I5)') IBM
WRITE(6,20) 'FDXM',FDXM(IBM,:NG,:NG)
WRITE(6,20) 'FDXP',FDXP(IBM,:NG,:NG)
ENDDO
ENDIF
*----
* SAVE THE OUTPUT NODAL MACROLIB
*----
ALLOCATE(IJJ(NMIX1),NJJ(NMIX1),IPOS(NMIX1),WORK(NMIX1*NG))
ISTATE(:)=0
ISTATE(1)=NG
ISTATE(2)=NMIX1
ISTATE(3)=1
IF(J_FUEL.GT.0) ISTATE(4)=1
IF(ICODE(2).NE.0) ISTATE(8)=1 ! physical matrix albedo info
ISTATE(9)=1 ! diffusion coefficient information
IF(ISPH.EQ.0) ISTATE(12)=4 ! discontinuity factor information
CALL LCMPUT(IPMAC1,'STATE-VECTOR',NSTATE,1,ISTATE)
CALL LCMPUT(IPMAC1,'ENERGY',NG+1,2,ENER)
CALL LCMPUT(IPMAC1,'VOLUME',NMIX1,2,VOL)
CALL LCMPUT(IPMAC1,'B2 B1HOM',1,2,B2)
IF(ICODE(2).NE.0) CALL LCMPUT(IPMAC1,'ALBEDO',NG*NG,2,BETA)
IF(ISPH.EQ.0) THEN
CALL LCMSIX(IPMAC1,'ADF',1)
NTYPE=2
HADF(1)='ERM_M'
HADF(2)='ERM_P'
CALL LCMPUT(IPMAC1,'NTYPE',1,1,NTYPE)
CALL LCMPTC(IPMAC1,'HADF',8,NTYPE,HADF)
CALL LCMPUT(IPMAC1,HADF(1),NMIX1*NG*NG,2,FDXM)
CALL LCMPUT(IPMAC1,HADF(2),NMIX1*NG*NG,2,FDXP)
CALL LCMSIX(IPMAC1,' ',2)
ENDIF
JPMAC1=LCMLID(IPMAC1,'GROUP',NG)
DO IGR=1,NG
KPMAC1=LCMDIL(JPMAC1,IGR)
DO IBM=1,NMIX1
WORK(IBM)=VOL(IBM)*FLX(IBM,IGR)
ENDDO
CALL LCMPUT(KPMAC1,'FLUX-INTG',NMIX1,2,WORK)
CALL LCMPUT(KPMAC1,'NTOT0',NMIX1,2,TOT(:,IGR))
CALL LCMPUT(KPMAC1,'DIFF',NMIX1,2,DC(:,IGR))
DO IBM=1,NMIX1
WORK(IBM)=SCAT(IBM,IGR,IGR)
ENDDO
CALL LCMPUT(KPMAC1,'SIGW00',NMIX1,2,WORK)
CALL LCMPUT(KPMAC1,'CHI',NMIX1,2,CHI(:,IGR))
CALL LCMPUT(KPMAC1,'NUSIGF',NMIX1,2,SIGF(:,IGR))
IPOSDE=0
DO IBM=1,NMIX1
J2=IGR
J1=IGR
DO JGR=1,NG
IF(SCAT(IBM,IGR,JGR).NE.0.0) THEN
J2=MAX(J2,JGR)
J1=MIN(J1,JGR)
ENDIF
ENDDO
NJJ(IBM)=J2-J1+1
IJJ(IBM)=J2
IPOS(IBM)=IPOSDE+1
DO JGR=J2,J1,-1
IPOSDE=IPOSDE+1
IF(IPOSDE.GT.NG*NMIX1) CALL XABORT('BREERM: SCAT OVERFLOW.')
WORK(IPOSDE)=SCAT(IBM,IGR,JGR)
ENDDO
ENDDO
CALL LCMPUT(KPMAC1,'SCAT00',IPOSDE,2,WORK)
CALL LCMPUT(KPMAC1,'NJJS00',NMIX1,1,NJJ)
CALL LCMPUT(KPMAC1,'IJJS00',NMIX1,1,IJJ)
CALL LCMPUT(KPMAC1,'IPOS00',NMIX1,1,IPOS)
ENDDO
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(WORK,IPOS,NJJ,IJJ,ADF,SCAT,SIGF,CHI,TOT,DC,FLX,VOL)
DEALLOCATE(FHOMP,FHOMM,BETA,AFACTOR,FDXP,FDXM,ALPHA,ETA)
RETURN
20 FORMAT(1X,A9,1P,10E12.4,/(10X,10E12.4))
END
|