1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
*DECK B1HOM
SUBROUTINE B1HOM (IPMACR,LEAKSW,NUNKNO,OPTION,TYPE,NGRO,IPAS,NBM,
1 NFISSI,VOL,MAT,KEYFLX,FLUX,REFKEF,IMPX,DHOM,
2 GAMMA,ALAM1,INORM,B2)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Homogenization of the unit cell and solution of the B-n equations in
* fundamental mode condition.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPMACR pointer to the macrolib LCM object (L_MACROLIB signature).
* LEAKSW leakage flag (=.TRUE. if leakage is present on the outer
* surface).
* NUNKNO number of flux/current unknowns.
* OPTION type of leakage coefficients; can be 'LKRD' (recover leakage
* coefficients in Macrolib), 'RHS' (recover leakage coefficients
* in RHS flux object), 'B0' (B-0), 'P0' (P-0), 'B1' (B-1),
* 'P1' (P-1), 'B0TR' (B-0 with transport correction) or 'P0TR'
* (P-0 with transport correction).
* TYPE type of buckling iteration.
* Can be 'DIFF' (do a B-0 calculation of DHOM(NGRO) and exit);
* 'K' (do a B-n calculation with keff search);
* 'B' (do a B-n calculation with buckling search);
* 'L' (do a B-n calculation with buckling search
* for a problem with few or no fission).
* NGRO number of groups.
* IPAS number of volumes.
* NBM number of mixtures.
* NFISSI maximum number of fission spectrum assigned to a mixture.
* VOL volumes.
* MAT mixture number of each volume.
* KEYFLX position of each flux in the unknown vector.
* FLUX direct unknown vector.
* REFKEF target K-effective for type B or type L calculations.
* IMPX print flag.
* INORM type of leakage model:
* =1: Diffon; =2: Ecco; =3: Tibere.
* B2 original direction dependant buckling.
*
*Parameters: output
* DHOM homogeneous leakage coefficients.
* GAMMA gamma factors.
* ALAM1 effective multiplication factor.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
CHARACTER*4 OPTION,TYPE
TYPE(C_PTR) IPMACR
LOGICAL LEAKSW
INTEGER NUNKNO,NGRO,IPAS,NBM,NFISSI,MAT(IPAS),KEYFLX(IPAS),IMPX,
1 INORM
REAL VOL(IPAS),FLUX(NUNKNO,NGRO,2),DHOM(NGRO),GAMMA(NGRO),B2(4)
DOUBLE PRECISION REFKEF,ALAM1
*----
* LOCAL VARIABLES
*----
INTEGER IDEL(2)
INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ0,IJJ1,NJJ0,NJJ1
REAL, ALLOCATABLE, DIMENSION(:) :: ST,SA,SFNU,XHI,SCAT0,SCAT1,FL2
DOUBLE PRECISION B2HOM,CAET,A2,CURN,B2T(3)
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: PHI
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(PHI(NGRO))
*
IF(LEAKSW) CALL XABORT('B1HOM: FUNDAMENTAL MODE EXPECTED.')
IAN=0
IF ((OPTION.EQ.'B0').OR.(OPTION.EQ.'P0')) THEN
IAN=0
ELSE IF ((OPTION.EQ.'B1').OR.(OPTION.EQ.'P1')) THEN
IAN=1
ELSE IF ((OPTION.EQ.'B0TR').OR.(OPTION.EQ.'P0TR')) THEN
IAN=-1
ENDIF
ALLOCATE(IJJ0(NGRO),IJJ1(NGRO),NJJ0(NGRO),NJJ1(NGRO))
CALL B1HXS1(IPMACR,NGRO,NBM,IAN,NFISSI,IJJ0,IJJ1,NJJ0,NJJ1,IDEL)
*
ALLOCATE(ST(NGRO),SA(NGRO),SFNU(NGRO),XHI(NGRO),SCAT0(IDEL(1)),
1 SCAT1(IDEL(2)))
IF(INORM.EQ.2) THEN
* ECCO-TYPE ISOTROPIC STREAMING.
CALL B1HXS3(NUNKNO,IPMACR,IPAS,NGRO,NBM,IAN,VOL,MAT,KEYFLX,
1 FLUX(1,1,1),IJJ0,IJJ1,NJJ0,NJJ1,IDEL,PHI,ST,SCAT0,SCAT1,NGROIN)
ELSE IF(INORM.EQ.3) THEN
* TIBERE-TYPE ANISOTROPIC STREAMING.
IF(B2(4).EQ.0.0) THEN
B2T(1)=0.33333333333333D0
B2T(2)=B2T(1)
B2T(3)=B2T(1)
ELSE
B2T(1)=DBLE(B2(1))/DBLE(B2(4))
B2T(2)=DBLE(B2(2))/DBLE(B2(4))
B2T(3)=DBLE(B2(3))/DBLE(B2(4))
ENDIF
ALLOCATE(FL2(2*NUNKNO*NGRO))
IOF=0
DO 30 IGRO=1,NGRO
DO 10 IUNK=1,NUNKNO/4
IOF=IOF+1
FL2(IOF)=FLUX(IUNK,IGRO,1)
10 CONTINUE
DO 20 IUNK=1,NUNKNO/4
IOF=IOF+1
CURN=0.0D0
DO 15 IDIR=1,3
CURN=CURN+B2T(IDIR)*FLUX(NUNKNO/4*IDIR+IUNK,IGRO,1)
15 CONTINUE
FL2(IOF)=REAL(CURN)
20 CONTINUE
30 CONTINUE
CALL B1HXS3(NUNKNO/2,IPMACR,IPAS,NGRO,NBM,IAN,VOL,MAT,KEYFLX,
1 FL2(1),IJJ0,IJJ1,NJJ0,NJJ1,IDEL,PHI,ST,SCAT0,SCAT1,NGROIN)
DEALLOCATE(FL2)
ENDIF
CALL B1HXS2(NUNKNO,IPMACR,IPAS,NGRO,NBM,IAN,NFISSI,VOL,MAT,
1 KEYFLX,FLUX,LFISSI,IJJ0,IJJ1,NJJ0,NJJ1,IDEL,PHI,SA,ST,SFNU,
2 XHI,SCAT0,SCAT1,NGROIN,INORM)
*
B2OLD=B2(4)
B2HOM=DBLE(B2OLD)
CALL B1DIF(OPTION,TYPE,NGRO,ST,SFNU,XHI,IJJ0,IJJ1,NJJ0,NJJ1,SCAT0,
1 SCAT1,REFKEF,LFISSI,IMPX,DHOM,GAMMA,B2HOM,ALAM1,CAET,A2,PHI)
B2(4)=REAL(B2HOM)
*
IF (TYPE.EQ.'DIFF') GO TO 130
*----
* CORRECT THE SOURCES WITH THE NEW BUCKLING
*----
DO 35 L=1,NUNKNO
DO 34 I=1,NGRO
FLUX(L,I,2)=FLUX(L,I,2)+(B2(4)-B2OLD)*DHOM(I)*FLUX(L,I,1)
34 CONTINUE
35 CONTINUE
*----
* NORMALIZE THE DRAGON FLUX USING THE FUNDAMENTAL B1 SOLUTION
*----
IF(INORM.EQ.1) THEN
DO 60 I=1,NGRO
CAET=0.0D0
DO 40 L=1,IPAS
CAET=CAET+VOL(L)*FLUX(KEYFLX(L),I,1)
40 CONTINUE
CAET=PHI(I)/CAET
DO 50 L=1,NUNKNO
FLUX(L,I,:2)=FLUX(L,I,:2)*REAL(CAET)
50 CONTINUE
60 CONTINUE
ELSE IF(INORM.EQ.2) THEN
DO 90 I=1,NGRO
CAET=0.0D0
CURN=0.0D0
DO 70 L=1,IPAS
CAET=CAET+VOL(L)*FLUX(KEYFLX(L),I,1)
CURN=CURN+VOL(L)*FLUX(KEYFLX(L)+NUNKNO/2,I,1)
70 CONTINUE
CAET=PHI(I)/CAET
CURN=PHI(I)*DHOM(I)/CURN
DO 80 L=1,NUNKNO/2
FLUX(L,I,:2)=FLUX(L,I,:2)*REAL(CAET)
FLUX(L+NUNKNO/2,I,:2)=FLUX(L+NUNKNO/2,I,:2)*REAL(CURN)
80 CONTINUE
90 CONTINUE
ELSE IF(INORM.EQ.3) THEN
IF(B2(4).EQ.0.0.OR.
> (B2(1).EQ.0.0.AND.B2(2).EQ.0.0.AND.B2(3).EQ.0.0)) THEN
B2T(1)=0.33333333333333D0
B2T(2)=B2T(1)
B2T(3)=B2T(1)
ELSE
B2HOM=1.0D0/(DBLE(B2(1))+DBLE(B2(2))+DBLE(B2(3)))
B2T(1)=B2HOM*DBLE(B2(1))
B2T(2)=B2HOM*DBLE(B2(2))
B2T(3)=B2HOM*DBLE(B2(3))
ENDIF
DO 120 I=1,NGRO
CAET=0.0D0
CURN=0.0D0
DO 100 L=1,IPAS
CAET=CAET+VOL(L)*FLUX(KEYFLX(L),I,1)
CURN=CURN+B2T(1)*FLUX(KEYFLX(L)+NUNKNO/4,I,1)*VOL(L)
> +B2T(2)*FLUX(KEYFLX(L)+NUNKNO/2,I,1)*VOL(L)
> +B2T(3)*FLUX(KEYFLX(L)+3*NUNKNO/4,I,1)*VOL(L)
100 CONTINUE
CAET=PHI(I)/CAET
CURN=PHI(I)*DHOM(I)/CURN
DO 110 L=1,IPAS
FLUX(KEYFLX(L),I,:2)=FLUX(KEYFLX(L),I,:2)*REAL(CAET)
FLUX(KEYFLX(L)+NUNKNO/4,I,:2)=
1 FLUX(KEYFLX(L)+NUNKNO/4,I,:2)*REAL(CURN)
FLUX(KEYFLX(L)+NUNKNO/2,I,:2)=
1 FLUX(KEYFLX(L)+NUNKNO/2,I,:2)*REAL(CURN)
FLUX(KEYFLX(L)+3*NUNKNO/4,I,:2)=
1 FLUX(KEYFLX(L)+3*NUNKNO/4,I,:2)*REAL(CURN)
110 CONTINUE
120 CONTINUE
ENDIF
*
130 DEALLOCATE(SCAT1,SCAT0,XHI,SFNU,SA,ST)
DEALLOCATE(NJJ1,NJJ0,IJJ1,IJJ0)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(PHI)
RETURN
END
|