summaryrefslogtreecommitdiff
path: root/Dragon/src/B1HOM.f
blob: b17afafb22779c1270e067ef96b9b105dc26bd88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
*DECK B1HOM
      SUBROUTINE B1HOM (IPMACR,LEAKSW,NUNKNO,OPTION,TYPE,NGRO,IPAS,NBM,
     1                  NFISSI,VOL,MAT,KEYFLX,FLUX,REFKEF,IMPX,DHOM,
     2                  GAMMA,ALAM1,INORM,B2)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Homogenization of the unit cell and solution of the B-n equations in
* fundamental mode condition.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPMACR  pointer to the macrolib LCM object (L_MACROLIB signature).
* LEAKSW  leakage flag (=.TRUE. if leakage is present on the outer
*         surface).
* NUNKNO  number of flux/current unknowns.
* OPTION  type of leakage coefficients; can be 'LKRD' (recover leakage
*         coefficients in Macrolib), 'RHS' (recover leakage coefficients
*         in RHS flux object), 'B0' (B-0), 'P0' (P-0), 'B1' (B-1),
*         'P1' (P-1), 'B0TR' (B-0 with transport correction) or 'P0TR'
*         (P-0 with transport correction).
* TYPE    type of buckling iteration.
*         Can be 'DIFF' (do a B-0 calculation of DHOM(NGRO) and exit);
*                'K' (do a B-n calculation with keff search);
*                'B' (do a B-n calculation with buckling search);
*                'L' (do a B-n calculation with buckling search
*                     for a problem with few or no fission).
* NGRO    number of groups.
* IPAS    number of volumes.
* NBM     number of mixtures.
* NFISSI  maximum number of fission spectrum assigned to a mixture.
* VOL     volumes.
* MAT     mixture number of each volume.
* KEYFLX  position of each flux in the unknown vector.
* FLUX    direct unknown vector.
* REFKEF  target K-effective for type B or type L calculations.
* IMPX    print flag.
* INORM   type of leakage model:
*         =1: Diffon; =2: Ecco; =3: Tibere.
* B2      original direction dependant buckling.
*
*Parameters: output
* DHOM    homogeneous leakage coefficients.
* GAMMA   gamma factors.
* ALAM1   effective multiplication factor.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      CHARACTER*4 OPTION,TYPE
      TYPE(C_PTR) IPMACR
      LOGICAL LEAKSW
      INTEGER NUNKNO,NGRO,IPAS,NBM,NFISSI,MAT(IPAS),KEYFLX(IPAS),IMPX,
     1 INORM
      REAL VOL(IPAS),FLUX(NUNKNO,NGRO,2),DHOM(NGRO),GAMMA(NGRO),B2(4)
      DOUBLE PRECISION REFKEF,ALAM1
*----
*  LOCAL VARIABLES
*----
      INTEGER IDEL(2)
      INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ0,IJJ1,NJJ0,NJJ1
      REAL, ALLOCATABLE, DIMENSION(:) :: ST,SA,SFNU,XHI,SCAT0,SCAT1,FL2
      DOUBLE PRECISION B2HOM,CAET,A2,CURN,B2T(3)
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: PHI
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(PHI(NGRO))
*
      IF(LEAKSW) CALL XABORT('B1HOM: FUNDAMENTAL MODE EXPECTED.')
      IAN=0
      IF ((OPTION.EQ.'B0').OR.(OPTION.EQ.'P0')) THEN
         IAN=0
      ELSE IF ((OPTION.EQ.'B1').OR.(OPTION.EQ.'P1')) THEN
         IAN=1
      ELSE IF ((OPTION.EQ.'B0TR').OR.(OPTION.EQ.'P0TR')) THEN
         IAN=-1
      ENDIF
      ALLOCATE(IJJ0(NGRO),IJJ1(NGRO),NJJ0(NGRO),NJJ1(NGRO))
      CALL B1HXS1(IPMACR,NGRO,NBM,IAN,NFISSI,IJJ0,IJJ1,NJJ0,NJJ1,IDEL)
*
      ALLOCATE(ST(NGRO),SA(NGRO),SFNU(NGRO),XHI(NGRO),SCAT0(IDEL(1)),
     1 SCAT1(IDEL(2)))
      IF(INORM.EQ.2) THEN
*        ECCO-TYPE ISOTROPIC STREAMING.
         CALL B1HXS3(NUNKNO,IPMACR,IPAS,NGRO,NBM,IAN,VOL,MAT,KEYFLX,
     1   FLUX(1,1,1),IJJ0,IJJ1,NJJ0,NJJ1,IDEL,PHI,ST,SCAT0,SCAT1,NGROIN)
      ELSE IF(INORM.EQ.3) THEN
*        TIBERE-TYPE ANISOTROPIC STREAMING.
         IF(B2(4).EQ.0.0) THEN
            B2T(1)=0.33333333333333D0
            B2T(2)=B2T(1)
            B2T(3)=B2T(1)
         ELSE
            B2T(1)=DBLE(B2(1))/DBLE(B2(4))
            B2T(2)=DBLE(B2(2))/DBLE(B2(4))
            B2T(3)=DBLE(B2(3))/DBLE(B2(4))
         ENDIF
         ALLOCATE(FL2(2*NUNKNO*NGRO))
         IOF=0
         DO 30 IGRO=1,NGRO
           DO 10 IUNK=1,NUNKNO/4
           IOF=IOF+1
           FL2(IOF)=FLUX(IUNK,IGRO,1)
   10      CONTINUE
           DO 20 IUNK=1,NUNKNO/4
           IOF=IOF+1
           CURN=0.0D0
           DO 15 IDIR=1,3
           CURN=CURN+B2T(IDIR)*FLUX(NUNKNO/4*IDIR+IUNK,IGRO,1)
   15      CONTINUE
           FL2(IOF)=REAL(CURN)
   20      CONTINUE
   30    CONTINUE
         CALL B1HXS3(NUNKNO/2,IPMACR,IPAS,NGRO,NBM,IAN,VOL,MAT,KEYFLX,
     1   FL2(1),IJJ0,IJJ1,NJJ0,NJJ1,IDEL,PHI,ST,SCAT0,SCAT1,NGROIN)
         DEALLOCATE(FL2)
      ENDIF
      CALL B1HXS2(NUNKNO,IPMACR,IPAS,NGRO,NBM,IAN,NFISSI,VOL,MAT,
     1 KEYFLX,FLUX,LFISSI,IJJ0,IJJ1,NJJ0,NJJ1,IDEL,PHI,SA,ST,SFNU,
     2 XHI,SCAT0,SCAT1,NGROIN,INORM)
*
      B2OLD=B2(4)
      B2HOM=DBLE(B2OLD)
      CALL B1DIF(OPTION,TYPE,NGRO,ST,SFNU,XHI,IJJ0,IJJ1,NJJ0,NJJ1,SCAT0,
     1 SCAT1,REFKEF,LFISSI,IMPX,DHOM,GAMMA,B2HOM,ALAM1,CAET,A2,PHI)
      B2(4)=REAL(B2HOM)
*
      IF (TYPE.EQ.'DIFF') GO TO 130
*----
*  CORRECT THE SOURCES WITH THE NEW BUCKLING
*----
      DO 35 L=1,NUNKNO
      DO 34 I=1,NGRO
      FLUX(L,I,2)=FLUX(L,I,2)+(B2(4)-B2OLD)*DHOM(I)*FLUX(L,I,1)
   34 CONTINUE
   35 CONTINUE
*----
*  NORMALIZE THE DRAGON FLUX USING THE FUNDAMENTAL B1 SOLUTION
*----
      IF(INORM.EQ.1) THEN
        DO 60 I=1,NGRO
          CAET=0.0D0
          DO 40 L=1,IPAS
            CAET=CAET+VOL(L)*FLUX(KEYFLX(L),I,1)
   40     CONTINUE
          CAET=PHI(I)/CAET
          DO 50 L=1,NUNKNO
            FLUX(L,I,:2)=FLUX(L,I,:2)*REAL(CAET)
   50     CONTINUE
   60   CONTINUE
      ELSE IF(INORM.EQ.2) THEN
        DO 90 I=1,NGRO
          CAET=0.0D0
          CURN=0.0D0
          DO 70 L=1,IPAS
            CAET=CAET+VOL(L)*FLUX(KEYFLX(L),I,1)
            CURN=CURN+VOL(L)*FLUX(KEYFLX(L)+NUNKNO/2,I,1)
   70     CONTINUE
          CAET=PHI(I)/CAET
          CURN=PHI(I)*DHOM(I)/CURN
          DO 80 L=1,NUNKNO/2
            FLUX(L,I,:2)=FLUX(L,I,:2)*REAL(CAET)
            FLUX(L+NUNKNO/2,I,:2)=FLUX(L+NUNKNO/2,I,:2)*REAL(CURN)
   80     CONTINUE
   90   CONTINUE
      ELSE IF(INORM.EQ.3) THEN
        IF(B2(4).EQ.0.0.OR.
     >    (B2(1).EQ.0.0.AND.B2(2).EQ.0.0.AND.B2(3).EQ.0.0)) THEN
          B2T(1)=0.33333333333333D0
          B2T(2)=B2T(1)
          B2T(3)=B2T(1)
        ELSE
          B2HOM=1.0D0/(DBLE(B2(1))+DBLE(B2(2))+DBLE(B2(3)))
          B2T(1)=B2HOM*DBLE(B2(1))
          B2T(2)=B2HOM*DBLE(B2(2))
          B2T(3)=B2HOM*DBLE(B2(3))
        ENDIF
        DO 120 I=1,NGRO
          CAET=0.0D0
          CURN=0.0D0
          DO 100 L=1,IPAS
          CAET=CAET+VOL(L)*FLUX(KEYFLX(L),I,1)
          CURN=CURN+B2T(1)*FLUX(KEYFLX(L)+NUNKNO/4,I,1)*VOL(L)
     >             +B2T(2)*FLUX(KEYFLX(L)+NUNKNO/2,I,1)*VOL(L)
     >             +B2T(3)*FLUX(KEYFLX(L)+3*NUNKNO/4,I,1)*VOL(L)
  100     CONTINUE
          CAET=PHI(I)/CAET
          CURN=PHI(I)*DHOM(I)/CURN
          DO 110 L=1,IPAS
          FLUX(KEYFLX(L),I,:2)=FLUX(KEYFLX(L),I,:2)*REAL(CAET)
          FLUX(KEYFLX(L)+NUNKNO/4,I,:2)=
     1    FLUX(KEYFLX(L)+NUNKNO/4,I,:2)*REAL(CURN)
          FLUX(KEYFLX(L)+NUNKNO/2,I,:2)=
     1    FLUX(KEYFLX(L)+NUNKNO/2,I,:2)*REAL(CURN)
          FLUX(KEYFLX(L)+3*NUNKNO/4,I,:2)=
     1    FLUX(KEYFLX(L)+3*NUNKNO/4,I,:2)*REAL(CURN)
  110     CONTINUE
  120   CONTINUE
      ENDIF
*
  130 DEALLOCATE(SCAT1,SCAT0,XHI,SFNU,SA,ST)
      DEALLOCATE(NJJ1,NJJ0,IJJ1,IJJ0)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(PHI)
      RETURN
      END