1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
|
*DECK THMTRS
SUBROUTINE THMTRS(MPTHMI,MPTHM,IMPX,IX,IY,NZ,XBURN,VOLXY,HZ,DTIME,
> CFLUX,POROS,FNFU,NFD,NDTOT,IFLUID,SNAME,SCOMP,
> IGAP,IFUEL,FNAME,FCOMP,FCOOL,FFUEL,ACOOL,
> HD,PCH,MAXITC,MAXIT1,MAXITL,ERMAXT,ERMAXC,SPDIN,TINLET,POULET,
> FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,KCONDC,UCONDC,
> IHGAP,KHGAP,IHCONV,KHCONV,WTEFF,IFRCDI,ISUBM,FRO,POW,TCOMB,DCOOL,
> TCOOL,TSURF)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Driver of the transient thermal-hydraulics module for a single time
* iteration
*
*Copyright:
* Copyright (C) 2013 Ecole Polytechnique de Montreal.
*
*Author(s):
* P. Gallet and A. Hebert
*
* 08/2023: C. Garrido Modifications to include Molten Salt heat transfer in
* coolant
* 07/2024: C. Garrido Modifications to include Molten Salt heat transfer
* in static fuel
*
*Parameters: input
* MPTHMI directory of the THM object containing steady-state
* thermohydraulics data at t-1.
* MPTHM directory of the THM object containing steady-state
* thermohydraulics data at t.
* IMPX printing index (=0 for no print).
* IX position of mesh along X direction.
* IY position of mesh along Y direction.
* NZ number of meshes along Z direction (channel direction).
* XBURN burnup distribution in MWday/tonne.
* VOLXY mesh area in the radial plane.
* HZ Z-directed mesh widths.
* DTIME time step in s.
* CFLUX critical heat flux in W/m^2.
* POROS oxyde porosity.
* FNFU number of active fuel rods in the fuel bundle.
* NFD number of discretisation points in fuel regions.
* NDTOT number of total discretization points in the the fuel
* pellet and the cladding.
* IFLUID type of fluid (0=H2O; 1=D2O).
* FCOOL power density fraction in coolant.
* FFUEL power density fraction in fuel.
* ACOOL coolant cross section area in m^2.
* HD hydraulic diameter of one assembly in m.
* PCH heating perimeter in m.
* MAXITC maximum number of flow iterations.
* MAXIT1 maximum number of conduction iterations.
* MAXITL maximum number of center-pellet iterations.
* ERMAXT convergence criterion for temperature in fuel pin in K.
* ERMAXC convergence criterion for coolant parameters (relative error).
* SPDIN inlet flow velocity at t in m/s.
* TINLET inlet temperature at t in K.
* POULET outlet pressure at t in Pa.
* FRACPU plutonium fraction in fuel.
* ICONDF fuel conductivity flag (0=Stora-Chenebault or COMETHE/
* 1=user-provided polynomial + inverse term).
* NCONDF degree of user-provided fuel conductivity polynomial.
* KCONDF polynomial coefficients for fuel conductivity in W/m/K^(k+1)
* (except for the two last coefficients which belongs to the
* inverse term).
* UCONDF required unit of temperature in polynomial for fuel
* conductivity (KELVIN or CELSIUS).
* ICONDC clad conductivity flag (0=default/1=user-provided
* polynomial).
* NCONDC degree of user-provided clad conductivity polynomial.
* KCONDC polynomial coefficients for clad conductivity in W/m/K^(k+1).
* UCONDC required unit of temperature in polynomial for clad
* conductivity (KELVIN or CELSIUS).
* IHGAP flag indicating HGAP chosen (0=default/1=user-provided).
* KHGAP fixed user-provided HGAP value in W/m^2/K.
* IHCONV flag indicating HCONV chosen (0=default/1=user-provided).
* KHCONV fixed user-provided HCONV value in W/m^2/K.
* WTEFF surface temperature's weighting factor in effective fuel
* temperature.
* IFRCDI flag indicating if average approximation is forced during
* fuel conductivity evaluation (0=default/1=average
* approximation forced).
* ISUBM subcooling model (0: one-phase; 1: Bowring model; 2: Saha-
* Zuber model).
* FRO radial power form factors.
* POW power distribution at t in W.
* IGAP Flag indicating if the gap is considered (0=gap/1=no gap)
* IFUEL type of fuel (0=UO2/MOX; 1=SALT).
* FNAME Name of the molten salt (e.g. "LiF-BeF2")
* FCOMP Composition of the molten salt (e.g. "0.66-0.34")
*
*Parameters: output
* TCOMB averaged fuel temperature distribution in K.
* DCOOL averaged coolant density distribution in g/cc.
* TCOOL averaged coolant temperature distribution in K.
* TSURF surface fuel temperature distribution in K.
*
*-----------------------------------------------------------------------
*
USE GANLIB
USE t_saltdata
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) MPTHMI,MPTHM
INTEGER IMPX,IX,IY,NZ,NFD,NDTOT,IFLUID,MAXITC,MAXIT1,MAXITL,IHGAP,
> IGAP,IFUEL
REAL XBURN(NZ),VOLXY,HZ(NZ),DTIME,CFLUX,POROS,FNFU(NZ),FFUEL(NZ),
> ERMAXT,ERMAXC,FCOOL(NZ),SPDIN,TINLET,POULET,FRACPU,
> KCONDF(NCONDF+3),KCONDC(NCONDC+1),KHGAP,KHCONV,WTEFF,FRO(NFD-1),
> POW(NZ),TCOMB(NZ),DCOOL(NZ),TCOOL(NZ),TSURF(NZ),DGCOOL(NZ),
> HLV(NZ),ACOOL(NZ),PCH(NZ),HD(NZ)
CHARACTER UCONDF*12,UCONDC*12
*----
* LOCAL VARIABLES
*----
TYPE(tpdata) STP,FTP
PARAMETER(KMAXO=100,MAXNPO=40,PES=9.81)
REAL ENT(4),RHOINL,MFLXIN,RHOIN0,MFLXIN0,HINLET,HINLE0,MUIN,
> DV(NZ),PARAM1,PARAM2,PARAM3,ERRG,ERRP,ERRH,ERR,DELTH,HMINF,
> POWLIN(NZ),PHI(NZ),MUT(NZ),RESM(NZ),RESP(NZ),RESH(NZ),QFUEL(NZ),
> QCOOL(NZ),TC1,AGM(NZ),PC(NZ),TSAT,PHIC(NZ),TP(NZ),TLC(NZ),
> HZC(NZ),XFL(NZ),EPS(NZ),TB,HGSAT,TCLAD(NZ),MFLXT0(NZ),ENTH(NZ),
> MFLXT(NZ),SLIP(NZ),K11
INTEGER KWA(NZ)
REAL TRE10(MAXNPO),TRE11(MAXNPO),RADD(MAXNPO),XX2(MAXNPO),
> XX3(MAXNPO),ZF(2)
CHARACTER HSMG*131,SNAME*32,SCOMP*32,FNAME*32,FCOMP*32
REAL XS(4)
DATA XS/-0.861136,-0.339981,0.339981,0.861136/
INTEGER IDFM
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: VELOT0,DCOOL0,PREST0,ENTHT0,
> DLIQT0,VELOT,PREST,ENTHT,TCENTT,DLIQT
REAL, ALLOCATABLE, DIMENSION(:,:) :: RAD,TEMPT0,TEMPT
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(RAD(NDTOT-1,NZ),VELOT0(NZ),DCOOL0(NZ),PREST0(NZ),
> ENTHT0(NZ),TEMPT0(NDTOT,NZ),DLIQT0(NZ),VELOT(NZ),PREST(NZ),
> ENTHT(NZ),TEMPT(NDTOT,NZ),TCENTT(NZ),DLIQT(NZ))
*----
* RECOVER DATA FROM FORMER TIME STEP OR STEADY-STATE CALCULATION IN THM
*----
CALL LCMGET(MPTHMI,'DENSITY',DCOOL0)
CALL LCMGET(MPTHMI,'PRESSURE',PREST0)
CALL LCMGET(MPTHMI,'ENTHALPY',ENTHT0)
CALL LCMGET(MPTHMI,'VELOCITIES',VELOT0)
CALL LCMGET(MPTHMI,'TEMPERATURES',TEMPT0)
CALL LCMGET(MPTHMI,'LIQUID-DENS',DLIQT0)
CALL LCMGET(MPTHMI,'POULET',POUT0)
CALL LCMGET(MPTHMI,'TINLET',TIN0)
CALL LCMGET(MPTHMI,'RADII',RAD)
IDFM = 0
*----
* CALCULATE THE INVERSE TIME STEP
*----
IF(DTIME.EQ.0.0) THEN
CALL XABORT('THMTRS: TIME STEP NOT DEFINED')
ELSE
DTINV=1.0/DTIME
ENDIF
*----
* COMPUTE THE INLET FLOW ENTHALPY AND MASS FLOW RATE
*----
IF(IFLUID.EQ.0) THEN
CALL THMSAT(POULET,TSAT)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHST(POULET,TSAT)
*CGT TODO: GET SATURATION TEMPERATURE FROM MSTPDB. GET ALSO FREEZING??
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSGT(SNAME,SCOMP,STP,IMPX)
CALL THMSST(STP,TSAT,IMPX)
ENDIF
IF(IFUEL.EQ.1) THEN
CALL THMSGT(FNAME,FCOMP,FTP,IMPX)
ENDIF
IF(TINLET.GT.TSAT) THEN
WRITE(HSMG,'(28HTHMTRS: OUTLET TEMPERATURE (,1P,E12.4,
1 40H K) GREATER THAN SATURATION TEMPERATURE.)') TINLET
CALL XABORT(HSMG)
ENDIF
RHOIN0=0.0
IF(IFLUID.EQ.0) THEN
CALL THMPT(POUT0,TIN0,RHOIN0,HINLE0,R3,R4,R5)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(POUT0,TIN0,RHOIN0,HINLE0,R3,R4,R5)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TINLET,RHOIN0,HINLE0,R3,R4,R5,IMPX)
ENDIF
MFLXIN0=SPDIN*RHOIN0
IF(IFLUID.EQ.0) THEN
CALL THMPT(POULET,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(POULET,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN,IMPX)
ENDIF
MFLXIN=SPDIN*RHOINL
IF(NDTOT.GT.MAXNPO) CALL XABORT('THMTRS: MAXNPO OVERFLOW')
*----
* MAIN LOOP ALONG THE 1D CHANNEL.
DO K=1,NZ
*----
* COMPUTE THE LINEAR POWER, THE VOLUMIC POWER, THE THERMAL EXCHANGE
* COEFFICIENT OF THE GAP AND THE THERMAL HEAT FLUX ALONG THE CHANNEL
*----
DV(K)=VOLXY*HZ(K)
* linear power in W/m.
POWLIN(K)=(POW(K)/DV(K))*VOLXY/FNFU(K)
* volumic power in W/m^3.
QFUEL(K)=POW(K)*FFUEL(K)/DV(K)
QCOOL(K)=POW(K)*FCOOL(K)/DV(K)
*----
* INITIALIZATION OF THE THERMO-HYDRAULICAL PROPERTIES OF THE FLUID
*----
DCOOL(K)=DCOOL0(K)
MUT(K)=MUIN
VELOT(K)=VELOT0(K)
MFLXT0(K)=DCOOL0(K)*VELOT(K)
MFLXT(K)=MFLXT0(K)
PREST(K)=PREST0(K)
ENTHT(K)=ENTHT0(K)
DLIQT(K)=DLIQT0(K)
DO L=1,NDTOT
TEMPT(L,K)=TEMPT0(L,K)
ENDDO
RESM(K)=MFLXT(K)
RESP(K)=PREST(K)
RESH(K)=ENTHT(K)
ENDDO
*----
* ITERATIVE PROCEDURE FOR EACH CHANNEL
*----
DO K=1,NZ
XFL(K)=0.0
EPS(K)=0.0
XFL(K)=0.0
MFLXT(K)=0.0
SLIP(K)=1.0
KWA(K)=0
ENDDO
KMIN=1
DO K=1,NZ
IF(POW(K).NE.0.0) THEN
KMIN=K
EXIT
ENDIF
ENDDO
ITERC=0
20 ITERC=ITERC+1
IF(ITERC.GT.MAXITC) THEN
CALL XABORT('THMTRS: CONVERGENCE FAILURE IN FLOW CALCULATION.')
ENDIF
*----
* MAIN LOOP ALONG THE 1D CHANNEL.
*----
K0=0 ! onset of nuclear boiling point
DO K=KMIN,NZ
IF(POW(K).EQ.0.0) CYCLE
IF(IMPX.GT.4) WRITE(6,190) K
*----
* SOLVE THE CONDUCTION EQUATIONS INSIDE THE FUEL ROD
*----
DO L=1,NDTOT-1
TRE10(L)=TEMPT0(L,K)
TRE11(L)=TEMPT(L,K)
RADD(L)=RAD(L,K)
ENDDO
TSCLAD=TEMPT(NDTOT,K)
IF(IGAP.EQ.0) THEN
CALL THMROD(IMPX,NFD,NDTOT-1,MAXIT1,MAXITL,ERMAXT,DTINV,
1 RADD,TRE10,TRE11,QFUEL(K),FRO,TSCLAD,POWLIN(K),XBURN(K),
2 POROS,FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,
3 KCONDC,UCONDC,IHGAP,KHGAP,IFRCDI,TC1,XX2,XX3,ZF)
ELSE
CALL THMRNG(IMPX,NFD,NDTOT-1,MAXIT1,MAXITL,ERMAXT,DTINV,
1 RADD,TRE10,TRE11,QFUEL(K),FRO,TSCLAD,POWLIN(K),XBURN(K),
2 POROS,FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,
3 KCONDC,UCONDC,IFRCDI,IFUEL,FTP
4 TC1,XX2,XX3,ZF)
ENDIF
*----
* COMPUTE THE HEAT FLUX FROM CLAD TO COOLANT IN W/m^2
*----
PHI(K)=(ZF(1)-TSCLAD*ZF(2))/RAD(NDTOT-1,K)
IF(PHI(K).GT.CFLUX) THEN
WRITE(HSMG,'(23HTHMTRS: THE HEAT FLUX (,1P,E12.4,5H) IS ,
> 37HGREATER THAN THE CRITICAL HEAT FLUX (,E12.4,2H).)')
> PHI(K),CFLUX
WRITE(6,'(/1X,A)') HSMG
ENDIF
*----
* FLOW RATE CALCULATION WITH MASS CONSERVATION EQUATION
*----
PARAM1=0.5*(DCOOL0(K)-DCOOL(K))*DTINV*HZ(K)
IF(K.EQ.KMIN) THEN
PARAM1=PARAM1+0.5*(RHOIN0-RHOINL)*DTINV*HZ(K)
MFLXT(K)=MFLXIN+PARAM1
ELSE
PARAM1=PARAM1+0.5*(DCOOL0(K-1)-DCOOL(K-1))*DTINV*HZ(K)
MFLXT(K)=MFLXT(K-1)+PARAM1
ENDIF
*----
* ENTHALPY VECTOR CALCULATION WITH ENERGY CONSERVATION EQUATION
*----
PARAM1=0.5*DCOOL(K)*DTINV*HZ(K)+MFLXT(K)
PARAM2=0.5*DCOOL0(K)*ENTHT0(K)*DTINV*HZ(K)
PARAM3=(QCOOL(K)+PHI(K)*PCH(K)/ACOOL(K))*HZ(K)
IF(K.EQ.KMIN) THEN
PARAM2=PARAM2+0.5*(RHOIN0*HINLE0-RHOINL*HINLET)*DTINV*HZ(K)
PARAM2=PARAM2+MFLXIN*HINLET
HMINF=HINLET
ELSE
PARAM2=PARAM2+0.5*(DCOOL0(K-1)*ENTHT0(K-1)-
1 DCOOL(K-1)*ENTHT(K-1))*DTINV*HZ(K)
PARAM2=PARAM2+MFLXT(K-1)*ENTHT(K-1)
HMINF=ENTHT(K-1)
ENDIF
ENTHT(K)=(PARAM2+PARAM3)/PARAM1
DELTH=ENTHT(K)-HMINF
*----
* COMPUTE THE COOLANT TEMPERATURE AND THE OUTER CLADDING TEMPERATURE
*----
DO I1=1,4
POINT=(1.0+XS(I1))/2.0
ENT(I1)=HMINF+POINT*DELTH
ENDDO
IF(K.GT.1) THEN
XFL(K)=XFL(K-1)
EPS(K)=EPS(K-1)
SLIP(K)=SLIP(K-1)
ENDIF
*CGT
IF ((IFLUID.EQ.0).OR.(IFLUID.EQ.1)) THEN
CALL THMH2O(1,IX,IY,K,K0,PREST(K),MFLXT(K),ENTHT(K),ENT,HD(K),
> IFLUID,IHCONV,KHCONV,ISUBM,RAD(NDTOT-1,K),ZF,VELOT(K),
> IDFM,PHI(K),XFL(K),EPS(K),SLIP(K),ACOOL(K),PCH(K),HZ(K),TCALO,
> DCOOL(K),DLIQT(K),DGCOOL(K),TRE11(NDTOT),
> KWA(K),VGJprime,HLV(K))
ELSEIF (IFLUID.EQ.2) THEN
CALL THMSAL(IMPX,1,IX,IY,K,K0,MFLXT(K),ENTHT(K),ENT,HD(K),
> STP,IHCONV,KHCONV,ISUBM,RAD(NDTOT-1,K),ZF,PHI(K),
> XFL(K),
> EPS(K),SLIP(K),HZ(K),TCALO,DCOOL(K),DLIQT(K),
> TRE11(NDTOT),KWA(K))
ENDIF
*CGT
DO L=1,NDTOT-1
TRE11(L)=XX2(L)+TRE11(NDTOT)*XX3(L)
TEMPT(L,K)=TRE11(L)
ENDDO
TEMPT(NDTOT,K)=TRE11(NDTOT)
*----
* RECOVER MESHWISE TEMPERATURES AND FLUID DENSITY. BY DEFAULT, USE THE
* ROWLANDS FORMULA TO COMPUTE THE EFFECTIVE FUEL TEMPERATURE, OTHERWISE
* USE USER-SPECIFIED WEIGHTING FACTOR.
*----
TCOMB(K)=(1.0-WTEFF)*TC1+WTEFF*TRE11(NFD)
TCOOL(K)=TCALO
TCENTT(K)=TC1
TSURF(K)=TRE11(NFD)
TCLAD(K)=TRE11(NDTOT)
ENDDO
*----
* MOMENTUM VECTOR CALCULATION WITH MOMENTUM CONSERVATION EQUATION
*----
* DO K=NZ,1,-1
* IF(POW(K).EQ.0.0) CYCLE
* RET=ABS(MFLXT(K))*(1.0-XFL(K))*HD/MUT(K)
* PARAM1=0.5*(MFLXT(K)-MFLXT0(K))*DTINV*HZ(K)
* PARAM2=MFLXT(K)**2.0/DCOOL(K)
* CALL THMFRI(RET,F)
* IF(XFL(K).GT.0.0) THEN
* CALL THMPLO(PREST(K),XFL(K),PHIL0)
* ELSE
* PHIL0=1.0
* ENDIF
* PARAM31=DCOOL(K)*PES
* PARAM32=0.5*F*MFLXT(K)**2.0/HD/DLIQT0(K)*PHIL0
* PARAM3=(PARAM31+PARAM32)*HZ(K)
* IF(K.EQ.1) THEN
* PARAM1=PARAM1+0.5*(MFLXIN-MFLXIN0)*DTINV*HZ(1)
* PARAM2=PARAM2-MFLXIN**2.0/RHOINL
* PREST(1)=PREST(2)+PARAM1+PARAM2+PARAM3
* ELSE IF(K.LT.NZ) THEN
* PARAM1=PARAM1+0.5*(MFLXT(K-1)-MFLXT0(K-1))*DTINV*
* 1 HZ(K)
* PARAM2=PARAM2-MFLXT(K-1)**2.0/DCOOL(K-1)
* PREST(K)=PREST(K+1)+PARAM1+PARAM2+PARAM3
* ELSE IF(K.EQ.NZ) THEN
* PARAM1=PARAM1+0.5*(MFLXT(NZ-1)-MFLXT0(NZ-1))*DTINV*
* 1 HZ(NZ)
* PARAM2=PARAM2-MFLXT(K-1)**2.0/DCOOL(K-1)
* PREST(NZ)=POULET+PARAM1+PARAM2+PARAM3
* ENDIF
* ENDDO
PINLET=PREST(KMIN)
*----
* CALCULATE THE VOID FRACTION COEFFICIENT AND THE STEAM QUALITY
*----
DO K=1,NZ
HZC(K)=HZ(K)
PHIC(K)=PHI(K)
TP(K)=TCLAD(K)
TLC(K)=TCOOL(K)
ENTH(K)=ENTHT(K)
AGM(K)=MFLXT(K)
PC(K)=PREST(K)
ENDDO
*----
* COMPUTE NEW VALUES OF DENSITIES AND VELOCITIES OVER CHANNEL
*----
DO K=1,NZ
IF(EPS(K).GT.0.0) THEN
IF(IFLUID.EQ.0) THEN
CALL THMSAT(PREST(K),TSAT)
CALL THMTX(TSAT,1.0,RGSAT,HGSAT,R3,R4,R5)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHST(PREST(K),TSAT)
CALL THMHTX(TSAT,1.0,RGSAT,HGSAT,R3,R4,R5)
ENDIF
DCOOL(K)=DLIQT(K)*(1.0-EPS(K))+EPS(K)*RGSAT
ELSE
DCOOL(K)=DLIQT(K)
ENDIF
VELOT(K)=MFLXT(K)/DCOOL(K)
ENDDO
*----
* CONVERGENCE TEST FOR THE ENTHALPY, PRESSURE DENSITY AND
* MASS FLUX CALCULATION.
*----
ERRG=0.0
ERRP=0.0
ERRH=0.0
ERR=0.0
ERX=0.0
DO K=1,NZ
IF(POW(K).EQ.0.0) CYCLE
IF(IFLUID.EQ.0) THEN
CALL THMSAT(PREST(K),TSAT)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHST(PREST(K),TSAT)
ENDIF
TB=TSAT-0.1
IF(TCOOL(K).LT.TB) THEN
IF(IFLUID.EQ.0) THEN
CALL THMPT(PREST(K),TCOOL(K),R11,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(PREST(K),TCOOL(K),R11,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TCOOL(K),R11,H11,K11,MUT(K),C11,IMPX)
ENDIF
ELSE
IF(IFLUID.EQ.0) THEN
CALL THMPT(PREST(K),TB,R11,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(PREST(K),TB,R11,H11,K11,MUT(K),C11)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TB,R11,H11,K11,MUT(K),C11,IMPX)
ENDIF
ENDIF
ERRG=MAX(ERRG,ABS(MFLXT(K)-RESM(K))/MFLXT(K))
ERRP=MAX(ERRP,ABS(PREST(K)-RESP(K))/PREST(K))
ERRH=MAX(ERRH,ABS(ENTHT(K)-RESH(K))/ENTHT(K))
RESM(K)=MFLXT(K)
RESP(K)=PREST(K)
RESH(K)=ENTHT(K)
ENDDO
ERR=MAX(ERRG,ERRP,ERRH)
IF(IMPX.GT.1) WRITE(6,200) ITERC,ERRG,ERRP,ERRH
IF(IFLUID.EQ.0) THEN
CALL THMPT(PINLET,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN)
ELSE IF(IFLUID.EQ.1) THEN
CALL THMHPT(PINLET,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN)
ELSE IF(IFLUID.EQ.2) THEN
CALL THMSPT(STP,TINLET,RHOINL,HINLET,R3,MUIN,CPVIN,IMPX)
ENDIF
IF((ERR.LT.ERMAXC).AND.(ITERC.GT.1)) THEN
GO TO 30
ELSE
GO TO 20
ENDIF
*----
* PRINT THE OUTLET THERMOHYDRAULICAL PARAMETERS
*----
30 IF(IMPX.GT.3) THEN
WRITE(6,'(/16H THMTRS: CHANNEL,2I6/1X,27(1H-))') IX,IY
WRITE(6,210) ' ___________________________________________',
> '____________________________________________________',
> '____________________________________________________',
> '_______________________________'
WRITE(6,210) '| | TFUEL | TSURF | MFLXT ',
> ' | DCOOL | TCOOL | PCOOL | HCO',
> 'OL | QFUEL | QCOOL | VOID | ',
> 'QUAL | SLIP | FLOW |',
> '| | K | K | Kg/m2/s | K',
> 'g/m3 | K | Pa | J/Kg | ',
> ' W/m3 | W/m3 | | ',
> '| | REGIME |'
WRITE(6,210) '|_____|____________|____________|___________',
> '__|_____________|_____________|_____________|_______',
> '______|_____________|_____________|___________|_____',
> '________|_____________|________|'
DO L=NZ,1,-1
IF(L.EQ.1) THEN
WRITE(6,220) '| BOT |',TCOMB(L),' |',TSURF(L),
> ' |',MFLXT(L),' |',DCOOL(L),' |',TCOOL(L),
> ' |',PREST(L),' |',ENTHT(L),' |',QFUEL(L),
> ' |',QCOOL(L),' |',EPS(L),' |',XFL(L),' |',SLIP(L),
> ' |',KWA(L),' |'
ELSEIF(L.EQ.NZ) THEN
WRITE(6,220) '| TOP |',TCOMB(L),' |',TSURF(L),
> ' |',MFLXT(L),' |',DCOOL(L),' |',TCOOL(L),
> ' |',PREST(L),' |',ENTHT(L),' |',QFUEL(L),
> ' |',QCOOL(L),' |',EPS(L),' |',XFL(L),' |',SLIP(L),
> ' |',KWA(L),' |'
ELSE
WRITE(6,225) '| ',L,' |',TCOMB(L),' |',TSURF(L),
> ' |',MFLXT(L),' |',DCOOL(L),' |',TCOOL(L),
> ' |',PREST(L),' |',ENTHT(L),' |',QFUEL(L),
> ' |',QCOOL(L),' |',EPS(L),' |',XFL(L),' |',SLIP(L),
> ' |',KWA(L),' |'
ENDIF
ENDDO
WRITE(6,210) '|_____|____________|____________|___________',
> '__|_____________|_____________|_____________|_______',
> '______|_____________|_____________|___________|_____',
> '________|_____________|________|'
ENDIF
*----
* MODIFICATION OF THE VECTORS TO FIT THE GEOMETRY OF THE CHANNELS AND
* THE BUNDLES AND WRITE THE DATA IN LCM OBJECT THM
*----
CALL LCMPUT(MPTHM,'PRESSURE',NZ,2,PREST)
CALL LCMPUT(MPTHM,'DENSITY',NZ,2,DCOOL)
CALL LCMPUT(MPTHM,'ENTHALPY',NZ,2,ENTHT)
CALL LCMPUT(MPTHM,'VELOCITIES',NZ,2,VELOT)
CALL LCMPUT(MPTHM,'CENTER-TEMPS',NZ,2,TCENTT)
CALL LCMPUT(MPTHM,'COOLANT-TEMP',NZ,2,TCOOL)
CALL LCMPUT(MPTHM,'LIQUID-DENS',NZ,2,DLIQT)
CALL LCMPUT(MPTHM,'PINLET',1,2,PINLET)
CALL LCMPUT(MPTHM,'TINLET',1,2,TINLET)
CALL LCMPUT(MPTHM,'VINLET',1,2,SPEED)
CALL LCMPUT(MPTHM,'POWER',NZ,2,POW)
CALL LCMPUT(MPTHM,'POULET',1,2,POULET)
CALL LCMPUT(MPTHM,'TEMPERATURES',NDTOT*NZ,2,TEMPT)
CALL LCMPUT(MPTHM,'RADII',(NDTOT-1)*NZ,2,RAD)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(DLIQT,TCENTT,TEMPT,ENTHT,PREST,VELOT,DLIQT0,TEMPT0,
> ENTHT0,PREST0,DCOOL0,VELOT0,RAD)
RETURN
*
190 FORMAT(/21H THMTRS: AXIAL SLICE=,I5)
200 FORMAT(/24H THMTRS: FLOW ITERATION=,I5,1P,8H ERROR=,3E12.4)
210 FORMAT(1X,A,A,A,A)
220 FORMAT(1X,A,F11.2,A,F11.2,A,F12.4,A,F12.4,A,F12.2,A,3P,E12.4,
> A,1P,E12.4,A,1P,E12.4,A,1P,E12.4,A,0P,F10.4,A,E12.4,A,
> E12.4,A,I5,2X,A)
225 FORMAT(1X,A,I3,A,F11.2,A,F11.2,A,F12.4,A,F12.4,A,F12.2,A,3P,
> E12.4,A,1P,E12.4,A,1P,E12.4,A,1P,E12.4,A,0P,F10.4,A,
> E12.4,A,E12.4,A,I5,2X,A)
END
|