1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
SUBROUTINE THMPV(SPEED, POULET, VCOOL, DCOOL, PCOOL, TCOOL, MUT, XFL, HD, NZ, HZ, EPS, RHOL, RHOG, VGJ, IDFM, ACOOL)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Update the pressure and velocity vectors in the THM model to model the
! pressure drop and the velocity of the fluid in the channel
!
!Copyright:
! Copyright (C) 2025 Ecole Polytechnique de Montreal
!
!Author(s): C. Huet
! 02/2025: C. Huet - Creation
!
!Parameters: input
! SPEED inlet velocity of the fluid in the channel
! POULET Pressure at the outlet
! VCOOL velocity of the fluid in the channel
! DCOOL density of the fluid in the channel
! PCOOL pressure of the fluid in the channel
! TCOOL temperature of the fluid in the channel
! MUT dynamic viscosity of the fluid in the channel
! XFL quality of the fluid in the channel
! HD hydraulic diameter of the channel
! NZ number of nodes in the channel
! HZ height of the channel
! EPS coolant void fraction in the channel
! RHOL density of the liquid fraction
! RHOG density of the vapour fraction
! VGJ drift velocity in the channel
! IDFM flag for the use of the drift flux model
! ACOOL cross-sectional area of the channel
!
!Parameters: output
! VCOOL velocity of the fluid in the channel
! PCOOL pressure of the fluid in the channel
!
!-----------------------------------------------------------------------
!
USE GANLIB
IMPLICIT NONE
!----
! SUBROUTINE ARGUMENTS
!----
INTEGER NZ, IDFM
REAL SPEED, POULET, VCOOL(NZ), DCOOL(NZ), PCOOL(NZ), TCOOL(NZ), MUT(NZ), XFL(NZ)
REAL HZ(NZ),VGJ(NZ),RHOL(NZ), RHOG(NZ), EPS(NZ), HD(NZ), ACOOL(NZ)
!----
! LOCAL VARIABLES
!----
REAL g
REAL(kind=8), ALLOCATABLE, DIMENSION(:,:) :: A
INTEGER K, I, J, IER
REAL PHIL0, TPMULT, TPMULT0
REAL REY, REY0, FRIC,FRIC0,DELTA, UL
REAL CP11, H11, K11, RHO11, MUL
g = 9.81 !gravity
ALLOCATE(A(2*NZ,2*NZ+1))
FORALL (I=1:2*NZ, J=1:2*NZ+1) A(I, J) = 0.0
!----
! MATRIX FILLING FOR THE PRESSURE AND VELOCITY CALCULATION
!----
! BOTTOM OF THE CHANNEL
!----
PRINT *, 'THMPV: Filling the matrix for pressure and velocity calculation'
PRINT *, 'THMPV: NZ = ', NZ
PRINT *, 'POULET = ', POULET
DO K = 1, NZ
IF (K .EQ. 1) THEN
IF(IDFM.GT.0) THEN
! COMPUTE MUL, UL and Reynolds AT K
CALL THMTX(TCOOL(K), 0.0, RHO11, H11, K11, MUL, CP11)
UL = VCOOL(K) - (EPS(K) / (1.0 - EPS(K)))*RHOG(K)/DCOOL(K) * VGJ(K)
REY0 = ABS(UL*RHOL(K)) * HD(K) / MUL
! COMPUTE MUL, UL and Reynolds AT K+1
CALL THMTX(TCOOL(K+1), 0.0, RHO11, H11, K11, MUL, CP11)
UL = VCOOL(K+1) - (EPS(K+1) / (1.0 - EPS(K+1)))*RHOG(K+1)/DCOOL(K+1) * VGJ(K+1)
REY = ABS(UL*RHOL(K+1)) * HD(K+1) / MUL
ELSE
REY = ABS(VCOOL(K+1)*DCOOL(K+1)) * (1.0 - XFL(K+1)) * HD(K+1) / MUT(K+1)
REY0 = ABS(VCOOL(K)*DCOOL(K)) * (1.0 - XFL(K)) * HD(K) / MUT(K)
ENDIF
CALL THMFRI(REY,EPS(K+1),HD(K+1),FRIC)!MUT à isoler vapeur/liquide : passer par THMTX(TCOOL, X=0)
CALL THMFRI(REY0,EPS(K),HD(K),FRIC0)
IF (XFL(K) .GT. 0.0) THEN
CALL THMPLO(PCOOL(K), XFL(K), PHIL0)
TPMULT0 = PHIL0
CALL THMPLO(PCOOL(K+1), XFL(K+1), PHIL0)
TPMULT = PHIL0
ELSE
TPMULT = 1.0
TPMULT0 = 1.0
ENDIF
A(1,1) = 1.0
! MOMENTUM CONSERVATION EQUATION
IF (IDFM .GT. 0) THEN
DELTA = ((EPS(K)/1-EPS(K))*RHOL(K)*RHOG(K)/DCOOL(K)*VGJ(K)**2) - &
((EPS(K+1)/1-EPS(K+1))*RHOL(K+1)*RHOG(K+1)/DCOOL(K+1)*VGJ(K+1)* &
ACOOL(K+1)/ACOOL(K)**2)
ELSE
DELTA = 0.0
ENDIF
A(K+NZ,K) = - (VCOOL(K)*DCOOL(K))*(1.0 - (TPMULT0*FRIC0*HZ(K))/(2.0*HD(K)))
A(K+NZ,K+1) = (VCOOL(K+1)*DCOOL(K+1))*(1.0 + (TPMULT*FRIC*HZ(K))/ &
(2.0*HD(K+1)))*ACOOL(K+1)/ACOOL(K)
A(K+NZ, 2*NZ+1) = - ((DCOOL(K+1)* HZ(K+1)*ACOOL(K+1)/ACOOL(K) + DCOOL(K)* HZ(K)) &
* g ) /2 + DELTA
A(K+NZ,K-1+NZ) = 0.0
A(K+NZ,K+NZ) = -1.0
A(K+NZ,K+1+NZ) = ACOOL(K+1)/ACOOL(K)
! MASS CONSERVATION EQUATION
A(1, 2*NZ+1) = SPEED
!----
! TOP OF THE CHANNEL
!----
ELSE IF (K .EQ. NZ) THEN
! MASS CONSERVATION EQUATION
A(K,K-1) = - DCOOL(K-1)*ACOOL(K-1)/ACOOL(K)
A(K,K) = DCOOL(K)
! MOMENTUM CONSERVATION EQUATION
A(K, 2*NZ+1) = 0.0
A(2*NZ, 2*NZ+1) = POULET
A(2*NZ, 2*NZ) = 1.0
!----
! MIDDLE OF THE CHANNEL
!----
ELSE
IF (IDFM.GT.0) THEN
! COMPUTE MUL, UL and Reynolds AT K
CALL THMTX(TCOOL(K), 0.0, RHO11, H11, K11, MUL, CP11)
UL = VCOOL(K) - (EPS(K) / (1.0 - EPS(K)))*RHOG(K)/DCOOL(K) * VGJ(K)
REY0 = ABS(UL*RHOL(K)) * HD(K) / MUL
! COMPUTE MUL, UL and Reynolds AT K+1
CALL THMTX(TCOOL(K+1), 0.0, RHO11, H11, K11, MUL, CP11)
UL = VCOOL(K+1) - (EPS(K+1) / (1.0 - EPS(K+1)))*RHOG(K+1)/DCOOL(K+1) * VGJ(K+1)
REY = ABS(UL*RHOL(K+1)) * HD(K+1) / MUL
ELSE
REY = ABS(VCOOL(K+1)*DCOOL(K+1)) * (1.0 - XFL(K+1)) * HD(K+1) / MUT(K+1)
REY0 = ABS(VCOOL(K)*DCOOL(K)) * (1.0 - XFL(K)) * HD(K) / MUT(K)
ENDIF
CALL THMFRI(REY,EPS(K+1),HD(K+1),FRIC)
CALL THMFRI(REY0,EPS(K),HD(K),FRIC0)
IF (XFL(K) .GT. 0.0) THEN
CALL THMPLO(PCOOL(K+1), XFL(K+1), PHIL0)
TPMULT = PHIL0
CALL THMPLO(PCOOL(K), XFL(K), PHIL0)
TPMULT0 = PHIL0
ELSE
TPMULT = 1.0
TPMULT0 = 1.0
ENDIF
! MASS CONSERVATION EQUATION
A(K,K-1) = - DCOOL(K-1)*ACOOL(K-1)/ACOOL(K)
A(K,K) = DCOOL(K)
A(K,K+1) = 0.0
A(K, 2*NZ+1) = 0.0
!----
! MOMENTUM CONSERVATION EQUATION
!----
IF (IDFM .GT. 0) THEN
DELTA = ((EPS(K)/1-EPS(K))*RHOL(K)*RHOG(K)/DCOOL(K)*VGJ(K)**2) - &
((EPS(K+1)/1-EPS(K+1))*RHOL(K+1)*RHOG(K+1)/DCOOL(K+1)*VGJ(K+1)**2*ACOOL(K+1) &
/ACOOL(K))
ELSE
DELTA = 0.0
ENDIF
A(K+NZ,K) = - (VCOOL(K)*DCOOL(K))*(1.0 - (TPMULT0*FRIC0*HZ(K))/(2.0*HD(K)))
A(K+NZ,K+1) = (VCOOL(K+1)*DCOOL(K+1))*(1.0 + (TPMULT*FRIC*HZ(K))/ &
(2.0*HD(K+1)))*ACOOL(K+1)/ACOOL(K)
A(K+NZ, 2*NZ+1) = - ((DCOOL(K+1)* HZ(K+1)*ACOOL(K+1)/ACOOL(K) + DCOOL(K)* &
HZ(K)) * g ) /2 + DELTA
A(K+NZ,K-1+NZ) = 0.0
A(K+NZ,K+NZ) = -1.0
A(K+NZ,K+1+NZ) = ACOOL(K+1)/ACOOL(K)
ENDIF
END DO
!----
! SOLVING THE LINEAR SYSTEM
!----
call ALSBD(2*NZ, 1, A, IER, 2*NZ)
if (IER /= 0) CALL XABORT('THMPV: SINGULAR MATRIX.')
!----
! RECOVER THE PRESSURE AND VELOCITY VECTORS
!----
DO K = 1, NZ
VCOOL(K) = REAL(A(K, 2*NZ+1))
PCOOL(K) = REAL(A(K+NZ, 2*NZ+1))
END DO
DEALLOCATE(A)
RETURN
END
|