summaryrefslogtreecommitdiff
path: root/Donjon/src/THMPV.f90
blob: 97d03821865c10d8d8bc9ab1fa98a8c02bf83e75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
SUBROUTINE THMPV(SPEED, POULET, VCOOL, DCOOL, PCOOL, TCOOL, MUT, XFL, HD, NZ, HZ, EPS, RHOL, RHOG, VGJ, IDFM, ACOOL)
!
!-----------------------------------------------------------------------
!
!Purpose:
! Update the pressure and velocity vectors in the THM model to model the
! pressure drop and the velocity of the fluid in the channel
!
!Copyright:
! Copyright (C) 2025 Ecole Polytechnique de Montreal
!
!Author(s): C. Huet
! 02/2025: C. Huet - Creation
!
!Parameters: input
! SPEED   inlet velocity of the fluid in the channel
! POULET  Pressure at the outlet
! VCOOL   velocity of the fluid in the channel
! DCOOL   density of the fluid in the channel
! PCOOL   pressure of the fluid in the channel
! TCOOL   temperature of the fluid in the channel
! MUT     dynamic viscosity of the fluid in the channel
! XFL     quality of the fluid in the channel
! HD      hydraulic diameter of the channel
! NZ      number of nodes in the channel
! HZ      height of the channel
! EPS     coolant void fraction in the channel
! RHOL    density of the liquid fraction
! RHOG    density of the vapour fraction
! VGJ     drift velocity in the channel
! IDFM    flag for the use of the drift flux model
! ACOOL   cross-sectional area of the channel
!
!Parameters: output
! VCOOL   velocity of the fluid in the channel
! PCOOL   pressure of the fluid in the channel
!
!-----------------------------------------------------------------------
!
    USE GANLIB
    IMPLICIT NONE
!----
!   SUBROUTINE ARGUMENTS
!----
    INTEGER NZ, IDFM
    REAL SPEED, POULET, VCOOL(NZ), DCOOL(NZ), PCOOL(NZ), TCOOL(NZ), MUT(NZ), XFL(NZ)
    REAL HZ(NZ),VGJ(NZ),RHOL(NZ), RHOG(NZ), EPS(NZ), HD(NZ), ACOOL(NZ) 
!----
!   LOCAL VARIABLES
!----
    REAL g
    REAL(kind=8), ALLOCATABLE, DIMENSION(:,:) :: A

    INTEGER K, I, J, IER
    REAL PHIL0, TPMULT, TPMULT0
    REAL REY, REY0, FRIC,FRIC0,DELTA, UL
    REAL CP11, H11, K11, RHO11, MUL

    g = 9.81 !gravity
    ALLOCATE(A(2*NZ,2*NZ+1))
    FORALL (I=1:2*NZ, J=1:2*NZ+1) A(I, J) = 0.0

!----
!   MATRIX FILLING FOR THE PRESSURE AND VELOCITY CALCULATION
!----
!   BOTTOM OF THE CHANNEL
!----
    PRINT *, 'THMPV: Filling the matrix for pressure and velocity calculation'
    PRINT *, 'THMPV: NZ = ', NZ
    PRINT *, 'POULET = ', POULET
    DO K = 1, NZ 
        IF (K .EQ. 1) THEN
            IF(IDFM.GT.0) THEN
    !       COMPUTE MUL, UL and Reynolds AT K
                CALL THMTX(TCOOL(K), 0.0, RHO11, H11, K11, MUL, CP11)
                UL = VCOOL(K) - (EPS(K) / (1.0 - EPS(K)))*RHOG(K)/DCOOL(K) * VGJ(K)
                REY0 = ABS(UL*RHOL(K)) * HD(K) / MUL
    !       COMPUTE MUL, UL and Reynolds AT K+1
                CALL THMTX(TCOOL(K+1), 0.0, RHO11, H11, K11, MUL, CP11)
                UL = VCOOL(K+1) - (EPS(K+1) / (1.0 - EPS(K+1)))*RHOG(K+1)/DCOOL(K+1) * VGJ(K+1)
                REY = ABS(UL*RHOL(K+1)) * HD(K+1) / MUL
            ELSE 
                REY = ABS(VCOOL(K+1)*DCOOL(K+1)) * (1.0 - XFL(K+1)) * HD(K+1) / MUT(K+1)
                REY0 = ABS(VCOOL(K)*DCOOL(K)) * (1.0 - XFL(K)) * HD(K) / MUT(K)
            ENDIF
            
            
            CALL THMFRI(REY,EPS(K+1),HD(K+1),FRIC)!MUT à isoler vapeur/liquide : passer par THMTX(TCOOL, X=0)
            CALL THMFRI(REY0,EPS(K),HD(K),FRIC0)

            IF (XFL(K) .GT. 0.0) THEN
                CALL THMPLO(PCOOL(K), XFL(K), PHIL0)
                TPMULT0 = PHIL0
                CALL THMPLO(PCOOL(K+1), XFL(K+1), PHIL0)
                TPMULT = PHIL0
            ELSE
                TPMULT = 1.0
                TPMULT0 = 1.0
            ENDIF
            A(1,1) = 1.0
!   MOMENTUM CONSERVATION EQUATION
            IF (IDFM .GT. 0) THEN
                DELTA = ((EPS(K)/1-EPS(K))*RHOL(K)*RHOG(K)/DCOOL(K)*VGJ(K)**2) - &
            ((EPS(K+1)/1-EPS(K+1))*RHOL(K+1)*RHOG(K+1)/DCOOL(K+1)*VGJ(K+1)* &
            ACOOL(K+1)/ACOOL(K)**2)
            ELSE
                DELTA = 0.0
            ENDIF
            A(K+NZ,K) = - (VCOOL(K)*DCOOL(K))*(1.0 - (TPMULT0*FRIC0*HZ(K))/(2.0*HD(K)))
            A(K+NZ,K+1) = (VCOOL(K+1)*DCOOL(K+1))*(1.0 + (TPMULT*FRIC*HZ(K))/ &
             (2.0*HD(K+1)))*ACOOL(K+1)/ACOOL(K)
            A(K+NZ, 2*NZ+1) =  - ((DCOOL(K+1)* HZ(K+1)*ACOOL(K+1)/ACOOL(K) + DCOOL(K)* HZ(K)) &
               * g ) /2 + DELTA
            A(K+NZ,K-1+NZ) = 0.0
            A(K+NZ,K+NZ) = -1.0
            A(K+NZ,K+1+NZ) = ACOOL(K+1)/ACOOL(K)

!    MASS CONSERVATION EQUATION
            A(1, 2*NZ+1) = SPEED

!----
!   TOP OF THE CHANNEL
!----
        ELSE IF (K .EQ. NZ) THEN
!   MASS CONSERVATION EQUATION
            A(K,K-1) = - DCOOL(K-1)*ACOOL(K-1)/ACOOL(K)
            A(K,K) = DCOOL(K)
!   MOMENTUM CONSERVATION EQUATION
            A(K, 2*NZ+1) = 0.0
            A(2*NZ, 2*NZ+1) = POULET
            A(2*NZ, 2*NZ) = 1.0
!----
!   MIDDLE OF THE CHANNEL
!----
        ELSE
            IF (IDFM.GT.0) THEN
!       COMPUTE MUL, UL and Reynolds AT K
                CALL THMTX(TCOOL(K), 0.0, RHO11, H11, K11, MUL, CP11)
                UL = VCOOL(K) - (EPS(K) / (1.0 - EPS(K)))*RHOG(K)/DCOOL(K) * VGJ(K)
                REY0 = ABS(UL*RHOL(K)) * HD(K) / MUL
!       COMPUTE MUL, UL and Reynolds AT K+1
                CALL THMTX(TCOOL(K+1), 0.0, RHO11, H11, K11, MUL, CP11)
                UL = VCOOL(K+1) - (EPS(K+1) / (1.0 - EPS(K+1)))*RHOG(K+1)/DCOOL(K+1) * VGJ(K+1)
                REY = ABS(UL*RHOL(K+1)) * HD(K+1) / MUL
            ELSE
                REY = ABS(VCOOL(K+1)*DCOOL(K+1)) * (1.0 - XFL(K+1)) * HD(K+1) / MUT(K+1)
                REY0 = ABS(VCOOL(K)*DCOOL(K)) * (1.0 - XFL(K)) * HD(K) / MUT(K)
            ENDIF        
            CALL THMFRI(REY,EPS(K+1),HD(K+1),FRIC)
            CALL THMFRI(REY0,EPS(K),HD(K),FRIC0)

            IF (XFL(K) .GT. 0.0) THEN
                CALL THMPLO(PCOOL(K+1), XFL(K+1), PHIL0)
                TPMULT = PHIL0
                CALL THMPLO(PCOOL(K), XFL(K), PHIL0)
                TPMULT0 = PHIL0
            ELSE
                TPMULT = 1.0
                TPMULT0 = 1.0
            ENDIF
!   MASS CONSERVATION EQUATION
            A(K,K-1) = - DCOOL(K-1)*ACOOL(K-1)/ACOOL(K)
            A(K,K) = DCOOL(K)
            A(K,K+1) = 0.0
            A(K, 2*NZ+1) = 0.0 
!----
!   MOMENTUM CONSERVATION EQUATION  
!----
            IF (IDFM .GT. 0) THEN
                DELTA = ((EPS(K)/1-EPS(K))*RHOL(K)*RHOG(K)/DCOOL(K)*VGJ(K)**2) - &
            ((EPS(K+1)/1-EPS(K+1))*RHOL(K+1)*RHOG(K+1)/DCOOL(K+1)*VGJ(K+1)**2*ACOOL(K+1) &
            /ACOOL(K))
            ELSE
                DELTA = 0.0
            ENDIF
            A(K+NZ,K) = - (VCOOL(K)*DCOOL(K))*(1.0 - (TPMULT0*FRIC0*HZ(K))/(2.0*HD(K)))
            A(K+NZ,K+1) = (VCOOL(K+1)*DCOOL(K+1))*(1.0 + (TPMULT*FRIC*HZ(K))/ &
             (2.0*HD(K+1)))*ACOOL(K+1)/ACOOL(K)
            A(K+NZ, 2*NZ+1) =  - ((DCOOL(K+1)* HZ(K+1)*ACOOL(K+1)/ACOOL(K) + DCOOL(K)* &
             HZ(K)) * g ) /2 + DELTA
            A(K+NZ,K-1+NZ) = 0.0
            A(K+NZ,K+NZ) = -1.0
            A(K+NZ,K+1+NZ) = ACOOL(K+1)/ACOOL(K)
        ENDIF
    END DO
!----
!   SOLVING THE LINEAR SYSTEM
!----
    call ALSBD(2*NZ, 1, A, IER, 2*NZ)

    if (IER /= 0) CALL XABORT('THMPV: SINGULAR MATRIX.')
!----
!   RECOVER THE PRESSURE AND VELOCITY VECTORS
!----
    DO K = 1, NZ
        VCOOL(K) = REAL(A(K, 2*NZ+1))
        PCOOL(K) = REAL(A(K+NZ, 2*NZ+1))
    END DO

    DEALLOCATE(A)
    
    RETURN
    END