summaryrefslogtreecommitdiff
path: root/Donjon/src/THMDRV.f
blob: ff642e36bb6f5abf4aa8e8e5e7b0fff2a2d1e78a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
*DECK THMDRV
      SUBROUTINE THMDRV(MPTHM,IMPX,IX,IY,NZ,XBURN,VOLXY,HZ,CFLUX,POROS,
     > FNFU,NFD,NDTOT,IFLUID,SNAME,SCOMP,IGAP,IFUEL,FNAME,FCOMP,FCOOL,
     > FFUEL,ACOOL,HD,PCH,RAD,
     > MAXIT1,MAXITL,ERMAXT,SPEED,TINLET,POUTLET,
     > FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,KCONDC,UCONDC,
     > IHGAP,KHGAP,IHCONV,KHCONV,WTEFF,IFRCDI,ISUBM,FRO,POW,IPRES,IDFM,
     > TCOMB, DCOOL,TCOOL,TSURF,HCOOL,PCOOL)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Driver of the steady-state thermal-hydraulics calculation.
*
*Copyright:
* Copyright (C) 2012 Ecole Polytechnique de Montreal.
*
*Author(s): 
* A. Hebert
* C. Garrido 
* 08/2023: Modifications to include Molten Salt heat transfer in coolant
* C. Garrido 
* 07/2024: Modifications to include Molten Salt heat transfer in static
*          fuel
* C. Huet
* 02/2025: Modifications to include pressure drop calculation
* R. Guasch & M. Bellier
* 08/2025: Modifications to include mass+momentum+energy conservation equation
*  solution using a Drift-Flux Model.
*
*Parameters: input
* MPTHM   directory of the THM object containing steady-state
*         thermohydraulics data.
* IMPX    printing index (=0 for no print).
* IX      position of mesh along X direction.
* IY      position of mesh along Y direction.
* NZ      number of meshes along Z direction (channel direction).
* XBURN   burnup distribution in MWday/tonne.
* VOLXY   mesh area in the radial plane.
* HZ      Z-directed mesh widths.
* CFLUX   critical heat flux in W/m^2.
* POROS   oxyde porosity.
* FNFU    number of active fuel rods in the fuel bundle.
* NFD     number of discretization points in fuel region.
* NDTOT   number of total discretization points in the the fuel
*         pellet and the cladding.
* IFLUID  type of fluid (0=H2O; 1=D2O; 2=SALT).
* SNAME   Name of the molten salt (e.g. "LiF-BeF2")
* SCOMP   Composition of the molten salt (e.g. "0.66-0.34")
* FCOOL   power density fraction in coolant.
* FFUEL   power density fraction in fuel.
* ACOOL   coolant cross section area in m^2.
* HD      hydraulic diameter of one assembly in m.
* PCH     heating perimeter in m.
* RAD     fuel and clad radii in m.
* MAXIT1  maximum number of conduction iterations.
* MAXITL  maximum number of center-pellet iterations.
* ERMAXT  convergence criterion.
* SPEED   inlet flow velocity in m/s.
* TINLET  inlet temperature in K.
* POUTLET outlet pressure in Pa.
* FRACPU  plutonium fraction in fuel.
* ICONDF  fuel conductivity flag (0=Stora-Chenebault or COMETHE/
*         1=user-provided polynomial + inverse term).
* NCONDF  degree of user-provided fuel conductivity polynomial.
* KCONDF  polynomial coefficients for fuel conductivity in W/m/K^(k+1)
*         (except for the two last coefficients which belongs to the
*         inverse term).
* UCONDF  required unit of temperature in polynomial for fuel
*         conductivity (KELVIN or CELSIUS).
* ICONDC  clad conductivity flag (0=default/1=user-provided
*         polynomial).
* NCONDC  degree of user-provided clad conductivity polynomial.
* KCONDC  polynomial coefficients for clad conductivity in W/m/K^(k+1).
* UCONDC  required unit of temperature in polynomial for clad
*         conductivity (KELVIN or CELSIUS).
* IHGAP   flag indicating HGAP chosen (0=default/1=user-provided).
* KHGAP   fixed user-provided HGAP value in W/m^2/K.
* IHCONV  flag indicating HCONV chosen (0=default/1=user-provided).
* KHCONV  fixed user-provided HCONV value in W/m^2/K.
* WTEFF   surface temperature's weighting factor in effective fuel
*         temperature.
* IFRCDI  flag indicating if average approximation is forced during
*         fuel conductivity evaluation (0=default/1=average
*         approximation forced).
* ISUBM   subcooling model (0: one-phase; 1: Jens-Lottes model;
*         2: Saha- Zuber model).
* FRO     radial power form factors.
* POW     power distribution in W.
* IGAP    Flag indicating if the gap is considered (0=gap/1=no gap)
* IFUEL   type of fuel (0=UO2/MOX; 1=SALT).
* FNAME   Name of the molten salt (e.g. "LiF-BeF2")
* FCOMP   Composition of the molten salt (e.g. "0.66-0.34")
* IPRES   flag indicating if pressure is to be computed (0=nonstant/
*         1=variable).
* IDFM    flag indicating if the drift flux model is to be used 
*         (0=Without modifications(Chexal correlation for epsilon, no drift flux model in the Navier-Stokes equations)
*           /1=EPRI/2=MODEBSTION/3=GERAMP/4=HEM1(VGJ=0)) 
*
*Parameters: output
* TCOMB   averaged fuel temperature distribution in K.
* DCOOL   coolant density distribution in g/cc.
* TCOOL   coolant temperature distribution in K.
* TSURF   surface fuel temperature distribution in K.
* HCOOL   coolant enthalpty distribution in J/kg.
* PCOOL   coolant pressure distribution in Pa.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
      USE t_saltdata
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) MPTHM
      INTEGER IMPX,IX,IY,NZ,NFD,NDTOT,IFLUID,MAXIT1,MAXITL,IHGAP,IGAP,
     > IFUEL,IPRES, IDFM
      REAL XBURN(NZ),VOLXY,CFLUX,POROS,FRACPU,ERMAXT,
     > SPEED,TINLET,POUTLET,
     > FFUEL(NZ),ACOOL(NZ),RAD(NDTOT-1,NZ),FNFU(NZ),FCOOL(NZ),HZ(NZ),
     > KCONDF(NCONDF+3),KCONDC(NCONDC+1),KHGAP,KHCONV,WTEFF,FRO(NFD-1),
     > POW(NZ),TCOMB(NZ),DCOOL(NZ),TCOOL(NZ),TSURF(NZ),HCOOL(NZ),
     > PCOOL(NZ),MUT(NZ), HD(NZ), PCH(NZ)
      CHARACTER UCONDF*12,UCONDC*12
*----
*  LOCAL VARIABLES
*----
      TYPE(tpdata) STP,FTP
      PARAMETER (KMAXO=100,MAXNPO=40)
      REAL TRE11(MAXNPO),RADD(MAXNPO),ENT(4),MFLOW,TLC(NZ)
      CHARACTER HSMG*131,SNAME*32,SCOMP*32,FNAME*32,FCOMP*32
      REAL XS(4),TC1,PC(NZ),TP(NZ),RHOL,XFL(NZ),EPS(NZ),HINLET,
     > TCLAD(NZ),ENTH(NZ),SLIP(NZ),AGM(NZ),QFUEL(NZ),QCOOL(NZ),K11,
     > VLIQ(NZ),VVAP(NZ)
      INTEGER KWA(NZ)
      REAL XX2(MAXNPO),XX3(MAXNPO),ZF(2)
      DATA XS/-0.861136,-0.339981,0.339981,0.861136/

      REAL TBUL(NZ),VGJprime(NZ),HLV(NZ),DGCOOL(NZ),DLCOOL(NZ)

      INTEGER I
      REAL PINLET, ERRV, ERRP, ERRD, NORMV, NORMP, NORMD
*----
*  ALLOCATABLE ARRAYS
*----
      REAL, ALLOCATABLE, DIMENSION(:) :: VCOOL,TCENT
      REAL, ALLOCATABLE, DIMENSION(:,:) :: TEMPT

      REAL, ALLOCATABLE, DIMENSION(:) :: PTEMP, VTEMP, DTEMP
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(VCOOL(NZ),TEMPT(NDTOT,NZ),TCENT(NZ))
      ALLOCATE(PTEMP(NZ), VTEMP(NZ), DTEMP(NZ))
*----
*  COMPUTE THE INLET FLOW ENTHALPY AND VELOCITY
*   INITIALIZE PINLET TO POUTLET, WILL BE UPDATED IF IPRES=1
*   ELSE PINLET = POUTLET
*----
      PINLET = POUTLET
      IF(NDTOT.GT.MAXNPO) CALL XABORT('THMDRV: MAXNPO OVERFLOW.')
      IF(IFLUID.EQ.0) THEN
         CALL THMSAT(PINLET,TSAT)
      ELSE IF(IFLUID.EQ.1) THEN
         CALL THMHST(PINLET,TSAT)
*CGT TODO: GET ALSO FREEZING??
      ELSE IF(IFLUID.EQ.2) THEN
         CALL THMSGT(SNAME,SCOMP,STP,IMPX)
         CALL THMSST(STP,TSAT,IMPX)
*CGT
      ENDIF
      IF (IFUEL.EQ.1) THEN
         CALL THMSGT(FNAME,FCOMP,FTP,IMPX)
      ENDIF

      IF(TINLET.GT.TSAT) THEN
         WRITE(HSMG,'(27HTHMDRV: INLET TEMPERATURE (,1P,E12.4,
     >   40H K) GREATER THAN SATURATION TEMPERATURE.)') TINLET
         CALL XABORT(HSMG)
      ENDIF
      IF(IFLUID.EQ.0) THEN
        CALL THMPT(PINLET,TINLET,RHOIN,HINLET,R3,R4,R5)
      ELSE IF(IFLUID.EQ.1) THEN
        CALL THMHPT(PINLET,TINLET,RHOIN,HINLET,R3,R4,R5)
      ELSE IF(IFLUID.EQ.2) THEN
        CALL THMSPT(STP,TINLET,RHOIN,HINLET,R3,R4,R5,IMPX)
      ENDIF
      MFLOW=SPEED*RHOIN
      HMSUP=HINLET
*----
*  INITIALIZE VALUES OF STEAM QUALITIES, VOID FRACTION AND DENSITY
*  PRESSURE, VELOCITY AND TEMPERATURE OF THE COOLANT ALONG THE CHANNEL.
*---
      DO K=1,NZ
         EPS(K)=0.0
         XFL(K)=0.0
         SLIP(K)=1.0
         KWA(K)=0
         MUT(K)=0.0
         QFUEL(K)=0.0
         VGJprime(K)=0.0
         HLV(K)=0.0

         PCOOL(K)=PINLET
         VCOOL(K)=MFLOW/RHOIN
         DCOOL(K)=RHOIN
         DLCOOL(K)=RHOIN
         DGCOOL(K)=0.0 
         TCOOL(K)=TINLET
         HCOOL(K)=HINLET
*----
*  COMPUTE THE SATURATION TEMPERATURE AND THE THERMODYNAMIC PROPERTIES
*  IF THE PRESSURE DROP IS COMPUTED
*---

        IF (IPRES.EQ.1) THEN
          IF(POW(K).EQ.0.0) CYCLE
          IF(IFLUID.EQ.0) THEN
            CALL THMSAT(PCOOL(K),TSAT)
          ELSE IF(IFLUID.EQ.1) THEN
            CALL THMHST(PCOOL(K),TSAT)
          ENDIF

          TB=TSAT-0.1
          IF(TCOOL(K).LT.TB) THEN
            IF(IFLUID.EQ.0) THEN
              CALL THMPT(PCOOL(K),TCOOL(K),RHOIN,H11,K11,MUT(K),C11)
            ELSE IF(IFLUID.EQ.1) THEN
              CALL THMHPT(PCOOL(K),TCOOL(K),RHOIN,H11,K11,MUT(K),C11)
            ELSE IF(IFLUID.EQ.2) THEN
              CALL THMSPT(STP,TCOOL(K),R11,H11,K11,MUT(K),C11,IMPX)
            ENDIF
          ELSE
            IF(IFLUID.EQ.0) THEN
              CALL THMPT(PCOOL(K),TB,R11,H11,K11,MUT(K),C11)
            ELSE IF(IFLUID.EQ.1) THEN
              CALL THMHPT(PCOOL(K),TB,R11,H11,K11,MUT(K),C11)
            ELSE IF(IFLUID.EQ.2) THEN
              CALL THMSPT(STP,TB,R11,H11,K11,MUT(K),C11,IMPX)
            ENDIF
          ENDIF
        ENDIF
      ENDDO
*----
*  MAIN LOOP ALONG THE 1D CHANNEL.
*----
      ERRV = 1.0
      ERRP = 1.0
      ERRD = 1.0
      NORMP = PINLET
      NORMV = SPEED
      NORMD = RHOIN
      I=0
      IF (IPRES .EQ. 0) GOTO 30
   10 CONTINUE
*----
*  UPDATE HINLET FUNCTION OF INLET PRESSURE AND TEMPERATURE
*----
       HMSUP=HINLET
       SPEED=MFLOW/DCOOL(1)
*----
*  WHILE LOOP FOR PRESSURE AND VELOCITY CONVERGENCE
*  CHECK FOR CONVERGENCE
*----
        IF (I .GT. 1000) GOTO 20
        IF ((ERRP.LT.5E-4).AND.(ERRV.LT.5E-4).AND.(IDFM.EQ.0)) GOTO 20

        IF ((IDFM.GT.0).AND.(I.GT.3)) THEN
        IF ((ERRP.LT.5E-4).AND.(ERRV.LT.5E-4).AND.(ERRD.LT.5E-4)) THEN
        GOTO 20
        ENDIF
        ENDIF

          I = I + 1

          PTEMP = PCOOL
          VTEMP = VCOOL
          DTEMP = DCOOL

          SPEED = MFLOW/DCOOL(1)
          CALL THMPV(SPEED, PCOOL(NZ), VCOOL, DCOOL, 
     >              PCOOL, TCOOL, MUT, XFL, HD, NZ,
     >              HZ, EPS, DLCOOL,DGCOOL, VGJprime, IDFM, ACOOL)
* Extrapolate from first two values of PCOOL to get PINLET at first face.
* This ensures that computed HINLET is not HCOOL(1)
          PINLET = (3.0/2.0)*PCOOL(1) - (1.0/2.0)*PCOOL(2)
          IF (IFLUID.EQ.0) THEN
            CALL THMPT(PINLET, TINLET, RHOIN, HINLET, R3, R4, R5)
          ELSE IF(IFLUID.EQ.1) THEN
            CALL THMHPT(PINLET,TINLET,RHOIN,HINLET,R3,R4,R5)
          ELSE IF(IFLUID.EQ.2) THEN
            CALL THMSPT(STP,TINLET,RHOIN,HINLET,R3,R4,R5,IMPX)
          ENDIF
*   Update inlet enthalpy based on computed inlet pressure.
          HMSUP = HINLET
   30 CONTINUE
*----
*  MAIN LOOP ALONG THE 1D CHANNEL.
*----
      K0=0 ! onset of nucleate boiling point
      DO K=1,NZ
        IF(POW(K).EQ.0.0) CYCLE
        IF(IFLUID.EQ.0) THEN
          CALL THMSAT(PCOOL(K),TSAT)
        ELSE IF(IFLUID.EQ.1) THEN
          CALL THMHST(PCOOL(K),TSAT)
        ENDIF
        TBUL(K)=TSAT
*----
*  COMPUTE THE LINEAR POWER, THE VOLUMIC POWER AND THE THERMAL EXCHANGE
*  COEFFICIENT OF THE GAP
*----
        DV=VOLXY*HZ(K)
*       linear power in W/m
        POWLIN=(POW(K)/DV)*VOLXY/FNFU(K)
*       volumic power in W/m^3
        QFUEL(K)=POW(K)*FFUEL(K)/DV
        QCOOL(K)=POW(K)*FCOOL(K)/DV
*----
*  INITIALIZATION OF PINCELL TEMPERATURES
*----
        IF(POW(K).EQ.0.0) CYCLE
        IF(IMPX.GT.4) WRITE(6,190) K
        DO L=1,NDTOT
           TRE11(L)=TCOMB(K)
        ENDDO
        DO L=1,NDTOT-1
           RADD(L)=RAD(L,K)
        ENDDO
*----
*  COMPUTE THE POWER DENSITY AND HEAT FLOW ALONG THE CHANNEL
*----
*       out-of-clad heat flow in W/m2
        IF(IMPX.GT.5) WRITE(6,'(15H THMDRV: QFUEL(,I5,2H)=,1P,E12.4,
     >  6H W/m2.)') K,QFUEL(K)
        PHI2=0.5*QFUEL(K)*RAD(NFD,K)**2/RAD(NDTOT-1,K)
        IF(PHI2.GT.CFLUX) THEN
          WRITE(HSMG,'(23HTHMDRV: THE HEAT FLUX (,1P,E12.4,5H) IS ,
     >    37HGREATER THAN THE CRITICAL HEAT FLUX (,E12.4,2H).)')
     >    PHI2,CFLUX
          CALL XABORT(HSMG)
        ENDIF
*----
*  COMPUTE FOUR VALUES OF ENTHALPY IN J/KG TO BE USED IN GAUSSIAN
*  INTEGRATION. DELTH1 IS THE ENTHALPY INCREASE IN EACH AXIAL MESH.
*---- 
        IF (IDFM.EQ.0) THEN
          DELTH1=(PCH(K)/ACOOL(K)*PHI2+QCOOL(K))*HZ(K)/MFLOW
        ELSE
          DELTH1= (PCH(K)/ACOOL(K)*PHI2+QCOOL(K))*HZ(K)*ACOOL(K)
        ENDIF
        IF ((K.GT.1).AND.(IDFM.GT.0)) THEN
          DELTH1= (PCH(K)/ACOOL(K)*PHI2+QCOOL(K))*HZ(K)*ACOOL(K)
          DELTH1 = DELTH1 + ((VCOOL(K-1) + EPS(K-1)*(DLCOOL(K-1)-
     >      DGCOOL(K-1))/DCOOL(K-1)*VGJprime(K-1))
     >      + (VCOOL(K) + EPS(K)*(DLCOOL(K)-DGCOOL(K))/
     >      DCOOL(K)*VGJprime(K)))/2*(PCOOL(K-1)*ACOOL(K-1)-PCOOL(K)
     >      *ACOOL(K))
          DELTH1 = DELTH1 +(EPS(K-1)*DGCOOL(K-1)*(DLCOOL(K-1)/
     >      DCOOL(K-1))*HLV(K-1)*VGJprime(K-1)*ACOOL(K-1))-(EPS(K)*
     >      DGCOOL(K)*(DLCOOL(K)/DCOOL(K))*HLV(K)*VGJprime(K)*ACOOL(K))   
          DELTH1 = DELTH1/MFLOW/ACOOL(K)
        ENDIF
        DO I1=1,4
          POINT=(1.0+XS(I1))/2.0
          ENT(I1)=HMSUP+POINT*DELTH1
        ENDDO
        HMSUP=HMSUP+DELTH1
*----
*  COMPUTE THE VALUE OF THE DENSITY AND THE CLAD-COOLANT HEAT TRANSFER
*  COEFFICIENT
*----
        IF(K.GT.1) THEN
          XFL(K)=XFL(K-1)
          EPS(K)=EPS(K-1)
          SLIP(K)=SLIP(K-1)
        ENDIF
*CGT
        IF ((IFLUID.EQ.0).OR.(IFLUID.EQ.1)) THEN
          CALL THMH2O(0,IX,IY,K,K0,PCOOL(K),MFLOW,HMSUP,ENT,HD(K),
     >    IFLUID,IHCONV,KHCONV,ISUBM,RAD(NDTOT-1,K),ZF,VCOOL(K),
     >    IDFM,PHI2,XFL(K),EPS(K),SLIP(K),ACOOL(K),PCH(K),HZ(K),TCALO,
     >    RHO,RHOL,RHOG,TRE11(NDTOT),KWA(K),VGJprime(K),HLV(K))
        ELSEIF (IFLUID.EQ.2) THEN
          CALL THMSAL(IMPX,0,IX,IY,K,K0,MFLOW,HMSUP,ENT,HD(K),STP,
     >    IHCONV,KHCONV,ISUBM,RAD(NDTOT-1,K),ZF,PHI2,XFL(K),
     >    EPS(K),SLIP(K),HZ(K),TCALO,RHO,RHOL,TRE11(NDTOT),
     >    KWA(K))
        ENDIF
*CGT
*----
*  STEADY-STATE SOLUTION OF THE CONDUCTION EQUATIONS IN A FUEL PIN.
*----
        DTINV=0.0
        IF(IGAP.EQ.0) THEN
          CALL THMROD(IMPX,NFD,NDTOT-1,MAXIT1,MAXITL,ERMAXT,DTINV,RADD,
     >    TRE11,TRE11,QFUEL(K),FRO,TRE11(NDTOT),POWLIN,XBURN(K),
     >    POROS,FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,
     >    KCONDC,UCONDC,IHGAP,KHGAP,IFRCDI,TC1,XX2,XX3,ZF)
        ELSE
          CALL THMRNG(IMPX,NFD,NDTOT-1,MAXIT1,MAXITL,ERMAXT,DTINV,RADD,
     >    TRE11,TRE11,QFUEL(K),FRO,TRE11(NDTOT),XBURN(K),
     >    POROS,FRACPU,ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,
     >    KCONDC,UCONDC,IFRCDI,IFUEL,FTP,TC1,XX2,XX3,ZF)
        ENDIF
*
        DO K1=1,NDTOT-1
          TRE11(K1)=XX2(K1)+TRE11(NDTOT)*XX3(K1)
        ENDDO
*----
*  RECOVER MESHWISE TEMPERATURES AND FLUID DENSITY. BY DEFAULT, USE THE
*  ROWLANDS FORMULA TO COMPUTE THE EFFECTIVE FUEL TEMPERATURE, OTHERWISE
*  USE USER-SPECIFIED WEIGHTING FACTOR.
*----  
        TCOMB(K)=(1.0-WTEFF)*TC1+WTEFF*TRE11(NFD)
        TCENT(K)=TC1
        TSURF(K)=TRE11(NFD)
        TCLAD(K)=TRE11(NDTOT)
        TCOOL(K)=TCALO
        DCOOL(K)=RHO
        DLCOOL(K)=RHOL
        HCOOL(K)=HMSUP
        PC(K)=PINLET
        TP(K)=TCLAD(K)
        TLC(K)=TCOOL(K)
        ENTH(K)=HCOOL(K)
        AGM(K)=MFLOW ! constant flow rate
        DO K2=1,NDTOT
          TEMPT(K2,K)=TRE11(K2)
        ENDDO
        IF (IPRES .EQ. 0) THEN
          PCOOL(K)=PINLET
          VCOOL(K)=MFLOW/DCOOL(K)
        ENDIF
*----
*  COMPUTE THE SATURATION TEMPERATURE AND THE THERMODYNAMIC PROPERTIES
*  IF THE PRESSURE DROP IS COMPUTED
*---
        IF (IPRES.EQ.1) THEN
          IF(POW(K).EQ.0.0) CYCLE
          IF(IFLUID.EQ.0) THEN
            CALL THMSAT(PCOOL(K),TSAT)
          ELSE IF(IFLUID.EQ.1) THEN
            CALL THMHST(PCOOL(K),TSAT)
          ENDIF
 
          TB=TSAT-0.1
          IF(TCOOL(K).LT.TB) THEN
            IF(IFLUID.EQ.0) THEN
             CALL THMPT(PCOOL(K),TCOOL(K),RHOIN,H11,K11,MUT(K),C11)
            ELSE IF(IFLUID.EQ.1) THEN
             CALL THMHPT(PCOOL(K),TCOOL(K),RHOIN,H11,K11,MUT(K),C11)
            ELSE IF(IFLUID.EQ.2) THEN
             CALL THMSPT(STP,TCOOL(K),R11,H11,K11,MUT(K),C11,IMPX)
            ENDIF
          ELSE
            IF(IFLUID.EQ.0) THEN
             CALL THMPT(PCOOL(K),TB,R11,H11,K11,MUT(K),C11)
            ELSE IF(IFLUID.EQ.1) THEN
             CALL THMHPT(PCOOL(K),TB,R11,H11,K11,MUT(K),C11)
            ELSE IF(IFLUID.EQ.2) THEN
             CALL THMSPT(STP,TB,R11,H11,K11,MUT(K),C11,IMPX)
            ENDIF
          ENDIF
         ENDIF
      ENDDO
*----
* IF THE PRESSURE DROP IS COMPUTED, COMPUTE THE 
* THE PRESSURE AND VELOCITY RESIDUALS
* IF DFM IS ACTIVATED, COMPUTE DCOOL RESIDUALS
*----
      IF (IPRES .EQ. 0) GOTO 20
      ERRV = 0.0
      ERRP = 0.0
      ERRD = 0.0
      NORMV = 0.0
      NORMP = 0.0
      NORMD = 0.0

      DO K=1,NZ
*         Under relaxation of coolant pressure and velocity.
          VCOOL(K) = 0.40*VCOOL(K) + (1.00-0.40)*VTEMP(K)
          PCOOL(K) = 0.40*PCOOL(K) + (1.00-0.40)*PTEMP(K)
          ERRV = ERRV + (VCOOL(K)-VTEMP(K))**2
          NORMV = NORMV + VCOOL(K)**2
          ERRP = ERRP + (PCOOL(K)-PTEMP(K))**2
          NORMP = NORMP + PCOOL(K)**2
        IF (IDFM.GT.0) THEN
*         Under relaxation of coolant density.
          DCOOL(K) = 0.40*DCOOL(K) + (1.00-0.40)*DTEMP(K)
          ERRD = ERRD + (DCOOL(K) - DTEMP(K))**2
          NORMD = NORMD + DCOOL(K)**2
        ENDIF
      ENDDO
      NORMV = SQRT(NORMV)
      NORMP = SQRT(NORMP)
      ERRV = SQRT(ERRV) / NORMV
      ERRP = SQRT(ERRP) / NORMP
      IF (IDFM.GT.0) THEN
        NORMD = SQRT(NORMD)
        ERRD = SQRT(ERRD) / NORMD
      ENDIF
      GO TO 10

   20 CONTINUE

      IF (I.GE.1000) THEN
        PRINT *, 'ERRV =', ERRV
        PRINT *, 'ERRP =', ERRP
        PRINT *, 'ERRD =', ERRD
        CALL XABORT('THMDRV: MAXIMUM NB OF ITERATIONS REACHED.')
      ELSE IF(IMPX.GT.0) THEN
        WRITE(6,'(37H THMDRV: CONVERGENCE REACHED AT ITER=,I5,1H.)') I
      ENDIF

*----
* RECONSTRUCT THE PHASE VELOCITIES FROM VCOOL, EPS and VGJ
*----
      DO K=1,NZ
        IF (IDFM .GT. 0) THEN
          VLIQ(K) = VCOOL(K) - (1.0/(1.0- EPS(K)) - DLCOOL(K)/DCOOL(K))
     >     * VGJprime(K)
          VVAP(K) = VCOOL(K) + DLCOOL(K)/DCOOL(K) *VGJprime(K)
        ELSE
          VLIQ(K) = VCOOL(K)
          VVAP(K) = VCOOL(K) 
        ENDIF
      ENDDO     
*----
* PRINT THE THERMOHYDRAULICAL PARAMETERS
*----
      IF(IMPX.GT.4) THEN
        WRITE(6,250) 'POW', POW(:NZ)
        WRITE(6,250) 'PCOOL', PCOOL(:NZ)
        WRITE(6,250) 'VCOOL', VCOOL(:NZ)
        WRITE(6,250) 'DCOOL', DCOOL(:NZ)
        WRITE(6,250) 'TCOOL', TCOOL(:NZ)
        WRITE(6,250) 'EPS', EPS(:NZ)
        WRITE(6,250) 'XFL', XFL(:NZ)
        WRITE(6,250) 'TSAT', TBUL(:NZ)
        WRITE(6,250) 'MUT', MUT(:NZ)
      ENDIF
*----
*  PRINT THE OUTLET THERMOHYDRAULICAL PARAMETERS
*----
      IF(IMPX.GT.3) THEN
        WRITE(6,'(/16H THMDRV: CHANNEL,2I6/1X,27(1H-))') IX,IY
        WRITE(6,210) ' ____________________________________________',
     >          '_____________________________________________________',
     >          '_____________________________________________________',
     >          '______________'
        WRITE(6,210) '|     |   TCOMB    |   TSURF    |    DCOOL ',
     >          '   |    TCOOL    |    PCOOL    |    HCOOL    |    ',
     >          'QFUEL    |    QCOOL    |    VOID   |     QUAL    |',
     >          '     SLIP    |  FLOW  |',
     >          '|     |     K      |     K      |    Kg/m3    |   ',
     >          '   K      |     Pa      |    J/Kg     |    W/m3   ',
     >          '  |    W/m3     |           |             |       ',
     >          '      | REGIME |'
        WRITE(6,210) '|_____|____________|____________|____________',
     >          '_|_____________|_____________|_____________|_________',
     >          '____|_____________|___________|_____________|________',
     >          '_____|________|'
        DO L=NZ,1,-1
          IF(L.EQ.1) THEN
            WRITE(6,220) '| BOT |',TCOMB(L),' |',TSURF(L),
     >            ' |',DCOOL(L),' |',TCOOL(L),' |',PCOOL(L),
     >            ' |',HCOOL(L),' |',QFUEL(L),' |',QCOOL(L),' |',
     >            EPS(L),' |',XFL(L),' |',SLIP(L),' |',KWA(L),' |'
          ELSEIF(L.EQ.NZ) THEN
            WRITE(6,220) '| TOP |',TCOMB(L),' |',TSURF(L),
     >            ' |',DCOOL(L),' |',TCOOL(L),' |',PCOOL(L),
     >            ' |',HCOOL(L),' |',QFUEL(L),' |',QCOOL(L),' |',
     >            EPS(L),' |',XFL(L),' |',SLIP(L),' |',KWA(L),' |'
          ELSE
            WRITE(6,230) '| ',L,' |',TCOMB(L),' |',TSURF(L),
     >            ' |',DCOOL(L),' |',TCOOL(L),' |',PCOOL(L),
     >            ' |',HCOOL(L),' |',QFUEL(L),' |',QCOOL(L),' |',
     >            EPS(L),' |',XFL(L),' |',SLIP(L),' |',KWA(L),' |'
          ENDIF
        ENDDO
        WRITE(6,210) '|_____|____________|____________|____________',
     >          '_|_____________|_____________|_____________|_________',
     >          '____|_____________|___________|_____________|________',
     >          '_____|________|'
        WRITE(6,240) MFLOW
      ENDIF
*----
*  MODIFICATION OF THE VECTORS TO FIT THE GEOMETRY OF THE CHANNELS AND
*  THE BUNDLES AND WRITE THE DATA IN LCM OBJECT THM 
*----
      CALL LCMPUT(MPTHM,'PRESSURE',NZ,2,PCOOL)
      CALL LCMPUT(MPTHM,'DENSITY',NZ,2,DCOOL)
      CALL LCMPUT(MPTHM,'LIQUID-DENS',NZ,2,DLCOOL)
      CALL LCMPUT(MPTHM,'ENTHALPY',NZ,2,HCOOL)
      CALL LCMPUT(MPTHM,'VELOCITIES',NZ,2,VCOOL)
      CALL LCMPUT(MPTHM,'V-LIQ',NZ,2,VLIQ)
      CALL LCMPUT(MPTHM,'V-VAP',NZ,2,VVAP)
      CALL LCMPUT(MPTHM,'EPSILON',NZ,2,EPS)
      CALL LCMPUT(MPTHM,'EPSOUT',1,2,EPS(NZ))
      CALL LCMPUT(MPTHM,'XFL',NZ,2,XFL)
      CALL LCMPUT(MPTHM,'CENTER-TEMPS',NZ,2,TCENT)
      CALL LCMPUT(MPTHM,'COOLANT-TEMP',NZ,2,TCOOL)
      CALL LCMPUT(MPTHM,'POWER',NZ,2,POW)
      CALL LCMPUT(MPTHM,'TEMPERATURES',NDTOT*NZ,2,TEMPT)
      CALL LCMPUT(MPTHM,'PINLET',1,2,PINLET)
      CALL LCMPUT(MPTHM,'TINLET',1,2,TINLET)
      CALL LCMPUT(MPTHM,'VINLET',1,2,SPEED)
      CALL LCMPUT(MPTHM,'POULET',1,2,POUTLET)
      CALL LCMPUT(MPTHM,'RADII',(NDTOT-1)*NZ,2,RAD)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(TCENT,TEMPT,VCOOL)
      DEALLOCATE(PTEMP, VTEMP, DTEMP)
      RETURN
*
  190 FORMAT(/21H THMDRV: AXIAL SLICE=,I5)
  210 FORMAT(1X,A,A,A,A)
  220 FORMAT(1X,A,F11.2,A,F11.2,A,F12.4,A,F12.2,A,3P,E12.4,
     >       A,1P,E12.4,A,1P,E12.4,A,1P,E12.4,A,0P,F10.4,A,E12.4,A,
     >       E12.4,A,I5,2X,A)
  230 FORMAT(1X,A,I3,A,F11.2,A,F11.2,A,F12.4,A,F12.2,A,3P,E12.4,
     >       A,1P,E12.4,A,1P,E12.4,A,1P,E12.4,A,0P,F10.4,A,E12.4,A,
     >       E12.4,A,I5,2X,A)
  240 FORMAT(7H MFLXT=,1P,E12.4,8H Kg/m2/s)
  250 FORMAT(9H THMDRV: ,A6,1H:,1P,11E12.4/(4X,12E12.4))
      END