summaryrefslogtreecommitdiff
path: root/Donjon/src/THMAVG.f
blob: 0e09a655191043551180aa72cbbeb15ba8deeb03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
*DECK THMAVG
      SUBROUTINE THMAVG(IPMAP,IMPX,NX,NY,NZ,NCH,TCOMB,TSURF,DCOOL,
     > TCOOL,PCOOL,HCOOL,POW,NSIMS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Print averaged thermalhydraulics properties over the core map.
*
*Copyright:
* Copyright (C) 2012 Ecole Polytechnique de Montreal.
*
*Author(s): 
* M. Cordiez
*
*Parameters: input
* IPMAP   pointer to the fuelmap object.
* IMPX    printing index (=0 for no print).
* NX      number of meshes along X direction.
* NY      number of meshes along Y direction.
* NZ      number of meshes along Z direction (channel direction).
* NCH     number of fuel channels in the axial plane.
* TCOMB   averaged fuel temperature distribution in K.
* TSURF   surface fuel temperature distribution in K.
* DCOOL   coolant density distribution in g/cc.
* TCOOL   coolant temperature distribution in K.
* PCOOL   coolant pressure distribution in Pa.
* HCOOL   coolant enthalpty distribution in J/kg.
* POW     power distribution in W.
* NSIMS   flag greater than zero to activate axial averaging of
*         thermohydraulics information.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER MAXHHX
      PARAMETER(MAXHHX=30)
      TYPE(C_PTR) IPMAP
      INTEGER IMPX,NX,NY,NZ,NCH,NSIMS
      REAL TCOMB(NZ,NX,NY),TSURF(NZ,NX,NY),DCOOL(NZ,NX,NY),
     > TCOOL(NZ,NX,NY),PCOOL(NZ,NX,NY),HCOOL(NZ,NX,NY),POW(NZ,NX,NY)
*----
*  LOCAL VARIABLES
*----
*     Variables for an averaged fuel bundle
      INTEGER NBLEVELCOMB,IHY(MAXHHX)
      REAL TCOMBAVGAVG, TSURFAVGAVG, DCOOLAVGAVG, TCOOLAVGAVG,
     > PCOOLAVGAVG, HCOOLAVGAVG, POWAVGAVG, POWRELAVGAVG
      REAL TCOMBAVG(NZ), TSURFAVG(NZ), DCOOLAVG(NZ), TCOOLAVG(NZ),
     > PCOOLAVG(NZ), HCOOLAVG(NZ), POWERAVG(NZ), POWRELAVG(NZ)
*     --> POWRELAVG : relative power by axial plane
*     Variables for axially averaged to draw a core map
      REAL TCOMBCM(NX,NY),TSURFCM(NX,NY),DCOOLCM(NX,NY),TCOOLCM(NX,NY),
     > PCOOLCM(NX,NY),HCOOLCM(NX,NY),POWERCM(NX,NY),POWRELCM(NX,NY)
      REAL POWAVGCM, POWRELAVGCM
      CHARACTER HHX(MAXHHX)*1,TEXT1*1,TEXT1B*1,TEXT4*4
*----
*  ALLOCATABLE ARRAYS
*----
      CHARACTER(LEN=4), ALLOCATABLE, DIMENSION(:) :: HZONE
*----
*  RECOVER NAVAL BATTLE COORDINATES OF THE MAP
*----
      IF(NSIMS.GT.0) THEN
        LX=NSIMS/100
        LY=MOD(NSIMS,100)
        ALLOCATE(HZONE(NCH))
        CALL LCMGTC(IPMAP,'S-ZONE',4,NCH,HZONE)
        TEXT4=HZONE(1)
        READ(TEXT4,'(A1,I2)') TEXT1,INTG2
        L=0
        DO K=1,NCH
          TEXT4=HZONE(K)
          READ(TEXT4,'(A1,I2)') TEXT1B,INTG2B
          IF(TEXT1B.EQ.TEXT1) THEN
            L=L+1
            IF(L.GT.MAXHHX)CALL XABORT('@THMAVG: MAXHHX OVERFLOW.(1)')
            IF(L.GT.LY)CALL XABORT('@THMAVG: INCOHERENCE IN BASIC '
     >      //'ASSEMBLY LAYOUT GIVEN IN RESINI: (1).')
            IHY(L)=INTG2B
          ENDIF
        ENDDO
        L=L+1
        IF(L.GT.MAXHHX)CALL XABORT('@THMAVG: MAXHHX OVERFLOW.(2)')
        IHY(L)=0
        L=0
        DO K=1,NCH
          TEXT4=HZONE(K)
          READ(TEXT4,'(A1,I2)') TEXT1B,INTG2B
          IF(INTG2B.EQ.IHY((LY+1)/2)) THEN
            L=L+1
            IF(L.GT.MAXHHX)CALL XABORT('@THMAVG: MAXHHX OVERFLOW.(3)')
            IF(L.GT.LX)CALL XABORT('@THMAVG: INCOHERENCE IN BASIC '
     >      //'ASSEMBLY LAYOUT GIVEN IN RESINI: (2).')
            HHX(L)=TEXT1B
          ENDIF
        ENDDO
        DEALLOCATE(HZONE)
      ENDIF
*----
*  VARIABLES INITIALIZATION
*----
*     Variables for an average fuel bundle
      TCOMBAVGAVG  = 0
      TSURFAVGAVG  = 0
      DCOOLAVGAVG  = 0
      TCOOLAVGAVG  = 0
      PCOOLAVGAVG  = 0
      HCOOLAVGAVG  = 0
      POWAVGAVG    = 0
      POWRELAVGAVG = 0
      NBLEVELCOMB = 0
      DO L=1,NZ
        TCOMBAVG(L) = 0.0
        TSURFAVG(L) = 0.0
        DCOOLAVG(L) = 0.0
        TCOOLAVG(L) = 0.0
        PCOOLAVG(L) = 0.0
        HCOOLAVG(L) = 0.0
        POWERAVG(L) = 0.0
        POWRELAVG(L) = 0.0
      ENDDO
*     Variables for an averaged core layer (map of values)
      POWAVGCM     = 0
      POWRELAVGCM  = 0
*----
*  SUM THE VALUES FOR A EVERY FUEL BUNDLE TO AVERAGE THEM
*----
      NBASS=0
      DO 95 I=1,NX
      DO 90 J=1,NY
      TCOMBCM(I,J) = 0.0
      TSURFCM(I,J) = 0.0
      DCOOLCM(I,J) = 0.0
      TCOOLCM(I,J) = 0.0
      PCOOLCM(I,J) = 0.0
      HCOOLCM(I,J) = 0.0
      POWERCM(I,J) = 0.0
      POWRELCM(I,J) = 0.0
      IF(POW((NZ+1)/2,I,J).GT.0.0) THEN
*        We do not average on the reflectors whose values equal 0
         NBASS=NBASS+1
         TCOMBAVG=TCOMBAVG+TCOMB(:,I,J)
         TSURFAVG=TSURFAVG+TSURF(:,I,J)
         DCOOLAVG=DCOOLAVG+DCOOL(:,I,J)
         TCOOLAVG=TCOOLAVG+TCOOL(:,I,J)
         PCOOLAVG=PCOOLAVG+PCOOL(:,I,J)
         HCOOLAVG=HCOOLAVG+HCOOL(:,I,J)
         POWERAVG=POWERAVG+POW(:,I,J)
      ENDIF
   90 CONTINUE
   95 CONTINUE
*----
*  COMPUTE THE AVERAGED VALUES FOR A GENERIC FUEL BUNDLE
*----
      IF(NSIMS.GT.0) THEN
         TCOMBAVG=TCOMBAVG/REAL(NBASS)
         TSURFAVG=TSURFAVG/REAL(NBASS)
         DCOOLAVG=DCOOLAVG/REAL(NBASS)
         TCOOLAVG=TCOOLAVG/REAL(NBASS)
         PCOOLAVG=PCOOLAVG/REAL(NBASS)
         HCOOLAVG=HCOOLAVG/REAL(NBASS)
         POWERAVG=POWERAVG/REAL(NBASS)
*
*        Computation of the relative power by axial plane and
*        computation of the averaged-on-z-axis values of an average
*        fuel bundle
         DO L=1,NZ
           TCOMBAVGAVG=TCOMBAVGAVG+TCOMBAVG(L)
           TSURFAVGAVG=TSURFAVGAVG+TSURFAVG(L)
           DCOOLAVGAVG=DCOOLAVGAVG+DCOOLAVG(L)
           TCOOLAVGAVG=TCOOLAVGAVG+TCOOLAVG(L)
           PCOOLAVGAVG=PCOOLAVGAVG+PCOOLAVG(L)
           HCOOLAVGAVG=HCOOLAVGAVG+HCOOLAVG(L)
           POWAVGAVG=POWAVGAVG+POWERAVG(L)
           IF(POWERAVG(L).NE.0) NBLEVELCOMB=NBLEVELCOMB+1
         ENDDO
         TCOMBAVGAVG=TCOMBAVGAVG/REAL(NBLEVELCOMB)
         TSURFAVGAVG=TSURFAVGAVG/REAL(NBLEVELCOMB)
         DCOOLAVGAVG=DCOOLAVGAVG/REAL(NBLEVELCOMB)
         TCOOLAVGAVG=TCOOLAVGAVG/REAL(NBLEVELCOMB)
         PCOOLAVGAVG=PCOOLAVGAVG/REAL(NBLEVELCOMB)
         HCOOLAVGAVG=HCOOLAVGAVG/REAL(NBLEVELCOMB)
         POWAVGAVG=POWAVGAVG/REAL(NBLEVELCOMB)
         POWRELAVG=POWERAVG/POWAVGAVG
*
*        Computation of the average relative power by axial plane
*        (it must be equal to 1)
         DO L=1,NZ
           POWRELAVGAVG=POWRELAVGAVG+POWRELAVG(L)
         ENDDO
         POWRELAVGAVG=POWRELAVGAVG/REAL(NBLEVELCOMB)
*
*        There is no use in computing them if the user does not want them
         IF(IMPX.GT.2) THEN
           WRITE(6,'(/28H THMAVG: AVERAGE FUEL BUNDLE/1X,27(1H-))')
           WRITE(6,210) ' ___________________________________________',
     >          '_____________________________________________________',
     >          '___________________'
           WRITE(6,210) '|     |    TFUEL    |    TSURF    |    DCOOL ',
     >          '   |    TCOOL    |    PCOOL    |    HCOOL    |    ',
     >          'POWER    |  POW REL  |'
           WRITE(6,230) '| AVG |',TCOMBAVGAVG,' |',TSURFAVGAVG,' |',
     >          DCOOLAVGAVG,' |',TCOOLAVGAVG,' |',PCOOLAVGAVG,' |',
     >          HCOOLAVGAVG,' |',POWAVGAVG,' |',POWRELAVGAVG,' |'
           WRITE(6,210) '|_____|_____________|_____________|__________',
     >          '___|_____________|_____________|_____________|_______',
     >          '______|___________|'
           DO L=NZ,1,-1
             IF(L.EQ.1) THEN
               WRITE(6,230) '| BOT |',TCOMBAVG(L),' |',TSURFAVG(L),
     >            ' |',DCOOLAVG(L),' |',TCOOLAVG(L),' |',PCOOLAVG(L),
     >            ' |',HCOOLAVG(L),' |',POWERAVG(L),' |',
     >            POWRELAVG(L),' |'
             ELSEIF(L.EQ.NZ) THEN
               WRITE(6,230) '| TOP |',TCOMBAVG(L),' |',TSURFAVG(L),
     >            ' |',DCOOLAVG(L),' |',TCOOLAVG(L),' |',PCOOLAVG(L),
     >            ' |',HCOOLAVG(L),' |',POWERAVG(L),' |',
     >            POWRELAVG(L),' |'
             ELSE
               WRITE(6,235) '| ',L,' |',TCOMBAVG(L),' |',TSURFAVG(L),
     >            ' |',DCOOLAVG(L),' |',TCOOLAVG(L),' |',PCOOLAVG(L),
     >            ' |',HCOOLAVG(L),' |',POWERAVG(L),' |',
     >            POWRELAVG(L),' |'
             ENDIF
           ENDDO
           WRITE(6,210) '|_____|_____________|_____________|_________',
     >          '____|_____________|_____________|_____________|______',
     >          '_______|___________|'
         ENDIF
*----
*  COMPUTE THE AVERAGED VALUES ON THE CORE MAP
*----
*       We do not average on the reflectors whose values equal 0
        DO K=1,NZ
            TCOMBCM(:,:)=TCOMBCM(:,:)+TCOMB(K,:,:)
            TSURFCM(:,:)=TSURFCM(:,:)+TSURF(K,:,:)
            DCOOLCM(:,:)=DCOOLCM(:,:)+DCOOL(K,:,:)
            TCOOLCM(:,:)=TCOOLCM(:,:)+TCOOL(K,:,:)
            PCOOLCM(:,:)=PCOOLCM(:,:)+PCOOL(K,:,:)
            HCOOLCM(:,:)=HCOOLCM(:,:)+HCOOL(K,:,:)
            POWERCM(:,:)=POWERCM(:,:)+POW(K,:,:)
        ENDDO
        TCOMBCM=TCOMBCM/REAL(NBLEVELCOMB)
        TSURFCM=TSURFCM/REAL(NBLEVELCOMB)
        DCOOLCM=DCOOLCM/REAL(NBLEVELCOMB)
        TCOOLCM=TCOOLCM/REAL(NBLEVELCOMB)
        PCOOLCM=PCOOLCM/REAL(NBLEVELCOMB)
        HCOOLCM=HCOOLCM/REAL(NBLEVELCOMB)
        POWERCM=POWERCM/REAL(NBLEVELCOMB)
*       Calculation of the relative power distribution (avg = 1)
        DO 106 I=1,NX
        DO 105 J=1,NY
          POWAVGCM=POWAVGCM+POWERCM(I,J)
  105   CONTINUE
  106   CONTINUE
        POWAVGCM=POWAVGCM/REAL(NBASS)
        POWRELCM=POWERCM/POWAVGCM
        DO 108 I=1,NX
        DO 107 J=1,NY
          POWRELAVGCM=POWRELAVGCM+POWRELCM(I,J)
  107   CONTINUE
  108   CONTINUE
        POWRELAVGCM=POWRELAVGCM/REAL(NBASS)
*
*        There is no use in computing them if the user does not want them
         IF(IMPX.GT.2) THEN
           IDEB=1
           JDEB=1
*          We do not draw the reflector
           I=1
           DO WHILE (POW((NZ+1)/2,I,(NY+1)/2).EQ.0)
             IDEB=IDEB+1
             I=I+1
           END DO
           J=1
           DO WHILE (POW((NZ+1)/2,(NX+1)/2,J).EQ.0)
             JDEB=JDEB+1
             J=J+1
           END DO
*          ********************
*          We write the results
*          ********************
*          Fuel temperature
           WRITE(6,'(/25H THMAVG: AVERAGE CORE MAP/1X,24(1H-))')
           WRITE(6,202) 'TCOMB'
           WRITE(6,203,ADVANCE='NO') (HHX(I),I=1,NX-2*IDEB+2)
           DO 111 J=JDEB,NY
             WRITE(6,204,ADVANCE='NO') IHY(J-JDEB+1)
             ENDLINE=0
           DO 110 I=IDEB,NX
             IF(POW((NZ+1)/2,I,J).GT.0) THEN
               WRITE(6,205,ADVANCE='NO') TCOMBCM(I,J)
               ENDLINE=1
             ELSE IF(ENDLINE.EQ.0) THEN
               WRITE(6,208,ADVANCE='NO')
             ENDIF
  110      CONTINUE
  111      CONTINUE
*          Surface temperature
           WRITE(6,202) 'TSURF'
           WRITE(6,203,ADVANCE='NO') (HHX(I),I=1,NX-2*IDEB+2)
           DO 113 J=JDEB,NY
             WRITE(6,204,ADVANCE='NO') IHY(J-JDEB+1)
             ENDLINE=0
           DO 112 I=IDEB,NX
             IF(POW((NZ+1)/2,I,J).GT.0) THEN
               WRITE(6,205,ADVANCE='NO') TSURFCM(I,J)
               ENDLINE=1
             ELSE IF(ENDLINE.EQ.0) THEN
               WRITE(6,208,ADVANCE='NO')
             ENDIF
  112      CONTINUE
  113      CONTINUE
*          Coolant density
           WRITE(6,202) 'DCOOL'
           WRITE(6,203,ADVANCE='NO') (HHX(I),I=1,NX-2*IDEB+2)
           DO 115 J=JDEB,NY
             WRITE(6,204,ADVANCE='NO') IHY(J-JDEB+1)
             ENDLINE=0
           DO 114 I=IDEB,NX
             IF(POW((NZ+1)/2,I,J).GT.0) THEN
               WRITE(6,206,ADVANCE='NO') DCOOLCM(I,J)
               ENDLINE=1
             ELSE IF(ENDLINE.EQ.0) THEN
               WRITE(6,208,ADVANCE='NO')
             ENDIF
  114      CONTINUE
  115      CONTINUE
*          Coolant temperature
           WRITE(6,202) 'TCOOL'
           WRITE(6,203,ADVANCE='NO') (HHX(I),I=1,NX-2*IDEB+2)
           DO 117 J=JDEB,NY
             WRITE(6,204,ADVANCE='NO') IHY(J-JDEB+1)
             ENDLINE=0
           DO 116 I=IDEB,NX
             IF(POW((NZ+1)/2,I,J).GT.0) THEN
               WRITE(6,205,ADVANCE='NO') TCOOLCM(I,J)
               ENDLINE=1
             ELSE IF(ENDLINE.EQ.0) THEN
               WRITE(6,208,ADVANCE='NO')
             ENDIF
  116      CONTINUE
  117      CONTINUE
*          Coolant pressure
           WRITE(6,202) 'PCOOL'
           WRITE(6,203,ADVANCE='NO') (HHX(I),I=1,NX-2*IDEB+2)
           DO 119 J=JDEB,NY
             WRITE(6,204,ADVANCE='NO') IHY(J-JDEB+1)
             ENDLINE=0
           DO 118 I=IDEB,NX
             IF(POW((NZ+1)/2,I,J).GT.0) THEN
               WRITE(6,207,ADVANCE='NO') PCOOLCM(I,J)
               ENDLINE=1
             ELSE IF(ENDLINE.EQ.0) THEN
               WRITE(6,208,ADVANCE='NO')
             ENDIF
  118      CONTINUE
  119      CONTINUE
*          Coolant enthalpy
           WRITE(6,202) 'HCOOL'
           WRITE(6,203,ADVANCE='NO') (HHX(I),I=1,NX-2*IDEB+2)
           DO 121 J=JDEB,NY
             WRITE(6,204,ADVANCE='NO') IHY(J-JDEB+1)
             ENDLINE=0
           DO 120 I=IDEB,NX
             IF(POW((NZ+1)/2,I,J).GT.0) THEN
               WRITE(6,207,ADVANCE='NO') HCOOLCM(I,J)
               ENDLINE=1
             ELSE IF(ENDLINE.EQ.0) THEN
               WRITE(6,208,ADVANCE='NO')
             ENDIF
  120      CONTINUE
  121      CONTINUE
*          Power
           WRITE(6,202) 'POWER'
           WRITE(6,203,ADVANCE='NO') (HHX(I),I=1,NX-2*IDEB+2)
           DO 123 J=JDEB,NY
             WRITE(6,204,ADVANCE='NO') IHY(J-JDEB+1)
             ENDLINE=0
           DO 122 I=IDEB,NX
             IF(POW((NZ+1)/2,I,J).GT.0) THEN
               WRITE(6,207,ADVANCE='NO') POWERCM(I,J)
               ENDLINE=1
             ELSE IF(ENDLINE.EQ.0) THEN
               WRITE(6,208,ADVANCE='NO')
             ENDIF
  122      CONTINUE
  123      CONTINUE
*          Power
           WRITE(6,209) 'RELATIVE POWER, REFLECTORS EXCLUDED (AVG:',
     1                  POWRELAVGCM,')'
           WRITE(6,203,ADVANCE='NO') (HHX(I),I=1,NX-2*IDEB+2)
           DO 125 J=JDEB,NY
             WRITE(6,204,ADVANCE='NO') IHY(J-JDEB+1)
             ENDLINE=0
           DO 124 I=IDEB,NX
             IF(POW((NZ+1)/2,I,J).GT.0) THEN
               WRITE(6,206,ADVANCE='NO') POWRELCM(I,J)
               ENDLINE=1
             ELSE IF(ENDLINE.EQ.0) THEN
               WRITE(6,208,ADVANCE='NO')
             ENDIF
  124      CONTINUE
  125      CONTINUE
         ENDIF
      ENDIF
      RETURN
*
  202 FORMAT(/1X,A)
  203 FORMAT(1X,20(8X,1A1))
  204 FORMAT(/1X,I2)
  205 FORMAT(F9.1)
  206 FORMAT(F9.3)
  207 FORMAT(1P,E9.2)
  208 FORMAT(9X)
  209 FORMAT(/1X,A,F7.4,A)
  210 FORMAT(1X,A,A,A,A)
  230 FORMAT(1X,A,F12.2,A,F12.2,A,F12.4,A,F12.2,A,3P,E12.4,
     >       A,1P,E12.4,A,1P,E12.4,A,0P,F10.4,A)
  235 FORMAT(1X,A,I3,A,F12.2,A,F12.2,A,F12.4,A,F12.2,A,3P,E12.4,
     >       A,1P,E12.4,A,1P,E12.4,A,0P,F10.4,A)
      END