summaryrefslogtreecommitdiff
path: root/Donjon/src/THM.f
blob: 4917d834b30142299456c76261ac31a9689d58a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
*DECK THM
      SUBROUTINE THM(NENTRY,HENTRY,IENTRY,JENTRY,KENTRY)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Simplified thermal-hydraulics module.
*
*Copyright:
* Copyright (C) 2013 Ecole Polytechnique de Montreal.
*
*Author(s): 
* A. Hebert, P. Gallet and V. Salino
* 02/2025: C. HUET - Modifications to include pressure drop calculation
* 08/2025: M.Bellier & R. Guasch modifified to include :
*                   - drift-flux model
*                   - variable axial properties  
*
*
*Parameters: input
* NENTRY  number of data structures transfered to this module.
* HENTRY  name of the data structures.
* IENTRY  data structure type where:
*         IENTRY=1 for LCM memory object;
*         IENTRY=2 for XSM file;
*         IENTRY=3 for sequential binary file;
*         IENTRY=4 for sequential ASCII file.
* JENTRY  access permission for the data structure where:
*         JENTRY=0 for a data structure in creation mode;
*         JENTRY=1 for a data structure in modifications mode;
*         JENTRY=2 for a data structure in read-only mode.
* KENTRY  data structure pointer.
*
*Comments:
* The THM: module specification is:
* THERMO MAPFL := THM: [ THERMO ] MAPFL :: (descthm) ;
* where
*   THERMO : name of the \emph{thermo) object that will be created or updated 
*     by the THM: module. Object \emph{thermo} contains thermal-hydraulics 
*     information set or computed by THM: in transient or in permanent 
*     conditions such as the distribution of the enthalpy, the pressure, the 
*     velocity, the density and the temperatures of the coolant for all the 
*     channels in the geometry. It also contains all the values of the fuel 
*     temperatures in transient or in permanent conditions according to the 
*     discretisation chosen for the fuel rods.
*   MAPFL : name of the \emph{map} object containing fuel regions description 
*     and local parameter informations.
*   (descthm) : structure describing the input data to the THM: module. 
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER      NENTRY,IENTRY(NENTRY),JENTRY(NENTRY)
      TYPE(C_PTR)  KENTRY(NENTRY)
      CHARACTER    HENTRY(NENTRY)*12
*----
*  LOCAL VARIABLES
*----
      PARAMETER(NSTATE=40,IOUT=6,PI=3.141592654,ZKILO=1.0E3)
      PARAMETER(IMAXO=1000,JMAXO=100,KMAXO=200,NMAXO=40,MAXRAD=10)
      PARAMETER(DTEMPR=5.0,DTEMPT=40.0,DPRESS=4.0)
      CHARACTER TEXT*40,TEXT12*12,HSIGN*12,PNAME*12,TXTDIR*12,HSMG*131,
     > UCONDF*12,UCONDC*12,SNAME*32,SCOMP*32,FNAME*32,FCOMP*32
      INTEGER ISTATE(NSTATE),TIMEIT,ITIME
      REAL STATE(NSTATE),DTIME,KHGAP,KHCONV,WTEFF
      REAL POULET,HX(IMAXO),HY(JMAXO),HZ(KMAXO)
      REAL RPRAD(MAXRAD),FPRAD(MAXRAD),TERP(MAXRAD)
      DOUBLE PRECISION DFLOT,DSUM
      LOGICAL LPRAD
      TYPE(C_PTR) IPTHM,IPMAP,JPMAP,KPMAP,JPTHM,KPTHM,LPTHM,MPTHM,
     > KPTHMI,LPTHMI,MPTHMI
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NUM,IREFSC
      REAL, ALLOCATABLE, DIMENSION(:) :: XX,YY,ZZ,BURN,BURN2,PW,FRO,
     1 FNFUCST,FNTGCST,FRACPU
      REAL, ALLOCATABLE, DIMENSION(:) :: FPOWER,KCONDF,KCONDC,TIMESR,
     1 TPOWER,PFORM,DTERP
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: XBURN,POW,TCOMB,DCOOL,
     1 TCOOL,TSURF,PCOOL,HCOOL
      REAL, ALLOCATABLE, DIMENSION(:,:,:,:) :: RAD
      DOUBLE PRECISION ARF,ARCI,ARCE,DARF,DARC
      REAL, ALLOCATABLE, DIMENSION(:,:) :: VAL,RVAL
      REAL, ALLOCATABLE, DIMENSION(:) :: ACOOL,PCH,HD,FFUEL,FCOOL
      REAL, ALLOCATABLE, DIMENSION(:) :: RAPCOOL,RAPFUEL,PM
      REAL, ALLOCATABLE, DIMENSION(:,:) :: FNFU,FNTG
*----
*  PARAMETER VALIDATION
*----
      IF(NENTRY.NE.2)CALL XABORT('@THM: 2 PARAMETERS EXPECTED.')
      IPTHM=KENTRY(1)
      IPMAP=KENTRY(2)
      IF((IENTRY(1).NE.1).AND.(IENTRY(1).NE.2))CALL XABORT('@THM:'
     1 //' LCM OBJECT EXPECTED AT FIRST LHS.')
      IF((IENTRY(2).NE.1).AND.(IENTRY(2).NE.2))CALL XABORT('@THM:'
     1 //' LCM OBJECT EXPECTED AT SECOND LHS.')
      CALL LCMGTC(IPMAP,'SIGNATURE',12,HSIGN)
      IF(HSIGN.NE.'L_MAP')THEN
        TEXT=HENTRY(2)
        CALL XABORT('@THM: SIGNATURE OF '//TEXT//' IS '//HSIGN//
     1  '. L_MAP EXPECTED.')
      ENDIF
*----
*  RECOVER L_MAP STATE-VECTOR
*----
      CALL LCMGET(IPMAP,'STATE-VECTOR',ISTATE)
      NB=ISTATE(1)
      NCH=ISTATE(2)
      NPARM=ISTATE(8)
      NSIMS=ISTATE(13)
      ALLOCATE(FNFUCST(NCH),FNTGCST(NCH),FRACPU(NCH))
*----
*  READ DATA
*----
      IMPX=1
      ITIME=0
      DTIME=0.0
      FPUISS=0.974
      CFLUX=2.0E+6
      SPEED=0.0
      TINLET=0.0
      POULET=0.0
      POROS=0.05
      ICONDF=0
      ICONDC=0
      IHGAP=0
      IHCONV=0
      IFRCDI=0
      ISUBM=1
      RC=0.0
      RIG=0.0
      RGG=0.0
      RTG=0.0
      PITCH=0.0
      MAXIT1=50
      MAXIT2=50
      MAXIT3=50
      IFLUID=0
      IFUEL=0
      IGAP=0
      IPRES=0
      IDFM=0
      ERMAXT=1.0
      ERMAXC=1.0E-3
      NFD=5
      NDTOT=8
      NPRAD=0
      TIMEIT=0
      NPOWER=0
      RELAX=1.0
      RTIME=0.0
      WTEFF=5.0/9.0 ! Rowlands weighting factor
      EPSR=0.0
      THETA=0.0
      UCONDF='CELSIUS'
      UCONDC='CELSIUS'
      TPOW=0.0
      FNFUCST(:NCH)=1.0
      FNTGCST(:NCH)=0.0
      FRACPU(:NCH)=0.0
      IF(JENTRY(1).EQ.1) THEN
        CALL LCMGET(IPTHM,'STATE-VECTOR',ISTATE)
        IF(ISTATE(1).NE.NCH) CALL XABORT('THM: INVALID STATE VECTOR FO'
     >  //'R IPTHM OPJECT.')
        MAXIT1=ISTATE(3)
        MAXIT2=ISTATE(4)
        MAXIT3=ISTATE(5)
        NFD=ISTATE(6)
        NDTOT=ISTATE(7)
        ITIME=ISTATE(8)
        TIMEIT=ISTATE(9)
        IHGAP=ISTATE(10)
        IHCONV=ISTATE(11)
        ICONDF=ISTATE(12)
        ICONDC=ISTATE(13)
        IFRCDI=ISTATE(14)
        ISUBM=ISTATE(15)
        IF(ICONDF.EQ.1) NCONDF=ISTATE(16)
        IF(ICONDC.EQ.1) NCONDC=ISTATE(17)
        NPRAD=ISTATE(18)
        IFLUID=ISTATE(20)
        IGAP=ISTATE(21)
        IPRES=ISTATE(22)
        CALL LCMGET(IPTHM,'REAL-PARAM',STATE)
        DTIME=STATE(1)
        FPUISS=STATE(2)
        CFLUX=STATE(3)
        SPEED=STATE(4)
        POULET=STATE(5)
        TINLET=STATE(6)
        POROS=STATE(7)
        RC=STATE(8)
        RIG=STATE(9)
        RGG=STATE(10)
        RTG=STATE(11)
        PITCH=STATE(12)
        ERMAXT=STATE(13)
        ERMAXC=STATE(14)
        RELAX=STATE(15)
        RTIME=STATE(16)
        IF(IHGAP.EQ.1) KHGAP=STATE(17)
        IF(IHCONV.EQ.1) KHCONV=STATE(18)
        WTEFF=STATE(19)
        TPOW=STATE(20)
        EPSR=STATE(22)
        THETA=STATE(23)
*----
*  RECOVER CELL-DEPENDENT DATA
*----
        CALL LCMGET(IPTHM,'NB-FUEL',FNFUCST)
        CALL LCMGET(IPTHM,'NB-TUBE',FNTGCST)
        CALL LCMGET(IPTHM,'FRACT-PU',FRACPU)
*----
*  RECOVER CONDUCTIVITY INFORMATION ON LCM OBJECT THM
*----
        IF(ICONDF.EQ.1) THEN
          ALLOCATE(KCONDF(NCONDF+3))
          CALL LCMGET(IPTHM,'KCONDF',KCONDF)
          CALL LCMGTC(IPTHM,'UCONDF',12,UCONDF)
        ENDIF
        IF(ICONDC.EQ.1) THEN
          ALLOCATE(KCONDC(NCONDC+1))
          CALL LCMGET(IPTHM,'KCONDC',KCONDC)
          CALL LCMGTC(IPTHM,'UCONDC',12,UCONDC)
        ENDIF
      ENDIF
*----
*  READ INPUT DATA
*----
      IPICK=0
      LPRAD=.FALSE.
   10 CALL REDGET(ITYP,NITMA,FLOT,TEXT,DFLOT)
      IF(ITYP.EQ.10)GO TO 60
   20 IF(ITYP.NE.3)CALL XABORT('@THM: CHARACTER DATA EXPECTED.')
      IF(TEXT.EQ.'EDIT') THEN
*       Read printing index
        CALL REDGET(ITYP,IMPX,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER FOR EDIT EXPECTED.')
      ELSE IF(TEXT.EQ.'TIME') THEN
*       Time at beginning of time-step (s).
        CALL REDGET(ITYP,NITMA,RTIME,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR RTIME EXPECTED.')
        CALL REDGET(ITYP,NITMA,FLOT,TEXT,DFLOT)
        IF(ITYP.EQ.2) THEN
          DTIME=FLOT
        ELSE IF(ITYP.EQ.3) THEN
          GO TO 20
        ELSE
          CALL XABORT('@THM: REAL FOR DTIME EXPECTED.')
        ENDIF
        ITIME=1
      ELSE IF(TEXT.EQ.'FLUID') THEN
*       Read fluid type
        CALL REDGET(ITYP,NITMA,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.3)CALL XABORT('@THM: CHARACTER FOR FLUID EXPECTED.')
        IF(TEXT.EQ.'H2O') THEN
           IFLUID=0
        ELSE IF(TEXT.EQ.'D2O') THEN
           IFLUID=1
        ELSE IF(TEXT.EQ.'SALT') THEN
           IFLUID=2
           CALL REDGET(ITYP,NITMA,FLOT,SNAME,DFLOT)
           IF(ITYP.NE.3) THEN
             CALL XABORT('@THM: CHARACTER FOR FLUID SALT NAME EXPECTED'
     >       //'.')
           ENDIF
           CALL REDGET(ITYP,NITMA,FLOT,SCOMP,DFLOT)
           IF(ITYP.NE.3) THEN
             CALL XABORT('@THM: CHARACTER FOR FLUID SALT COMPOSITION'
     >       //'EXPECTED.')
           ENDIF
        ELSE
           CALL XABORT('@THM: INVALID FLUID TYPE.')
        ENDIF
      ELSE IF(TEXT.EQ.'FUEL') THEN
*       Read fuel type
        CALL REDGET(ITYP,NITMA,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.3)CALL XABORT('@THM: CHARACTER FOR FLUID EXPECTED.')
        IF(TEXT.EQ.'UO2') THEN
           IFUEL=0
        ELSE IF(TEXT.EQ.'SALT') THEN
           IFUEL=1
           CALL REDGET(ITYP,NITMA,FLOT,FNAME,DFLOT)
           IF(ITYP.NE.3) THEN
             CALL XABORT('@THM: CHARACTER FOR FLUID EXPECTED.')
           ENDIF
           CALL REDGET(ITYP,NITMA,FLOT,FCOMP,DFLOT)
           IF(ITYP.NE.3) THEN
             CALL XABORT('@THM: CHARACTER FOR FLUID EXPECTED.')
           ENDIF
        ELSE
           CALL XABORT('@THM: INVALID FUEL TYPE.')
        ENDIF
      ELSE IF(TEXT.EQ.'FPUISS') THEN
*       Coolant power factor
        CALL REDGET(ITYP,NITMA,FLOT,TEXT,DFLOT)
        IF(ITYP.EQ.2) THEN
           FPUISS=FLOT
        ELSE
           CALL XABORT('@THM: REAL FOR FPUISS EXPECTED.')
        ENDIF
      ELSE IF(TEXT.EQ.'CRITFL') THEN
*       Critical heat flux (W/m^2)
        CALL REDGET(ITYP,NITMA,CFLUX,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR CFLUX EXPECTED.')
      ELSE IF(TEXT.EQ.'CWSECT') THEN
*       Core coolant section (m^2)
        CALL REDGET(ITYP,NITMA,CWSECT,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR CWSECT EXPECTED.')
*       Coolant flow (m^3/h)
        CALL REDGET(ITYP,NITMA,FLOW,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR FLOW EXPECTED.')
        SPEED=FLOW/(3600.0*CWSECT)
      ELSE IF(TEXT.EQ.'INLET-Q') THEN
*       Core coolant section (m^2)
        IF((POULET.EQ.0.0).OR.(TINLET.EQ.0.0)) CALL XABORT('@THM: INLE'
     >  //'T INFORMATION NOT SET BEFORE USING INLET-Q.')
        CALL REDGET(ITYP,NITMA,CWSECT,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR CWSECT EXPECTED.')
*       Inlet mass flow rate (kg/s)
        CALL REDGET(ITYP,NITMA,QFLUID,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR QFLUID EXPECTED.')
        IF(IFLUID.EQ.0) THEN
          CALL THMPT(POULET,TINLET,RHOL,R2,R3,R4,R5)
        ELSE IF(IFLUID.EQ.1) THEN
          CALL THMHPT(POULET,TINLET,RHOL,R2,R3,R4,R5)
        ELSE IF(IFLUID.EQ.2) THEN
          CALL THMSPT(SNAME,SCOMP,TINLET,RHOL,R2,R3,R4,R5,IMPX)
        ENDIF
        SPEED=QFLUID/(CWSECT*RHOL)
      ELSE IF(TEXT.EQ.'SPEED') THEN
*       Coolant velocity (m/s)
        CALL REDGET(ITYP,NITMA,SPEED,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR SPEED EXPECTED.')
      ELSE IF(TEXT.EQ.'INLET') THEN
*       The POULET and TINLET informations are used to compute initial
*       enthalpy and water density.
*       Outlet pressure (Pa)
        CALL REDGET(ITYP,NITMA,POULET,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR POULET EXPECTED.')
*       Inlet temperature (K)
        CALL REDGET(ITYP,NITMA,TINLET,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR TINLET EXPECTED.')
      ELSE IF(TEXT.EQ.'PUFR') THEN
        ICONDF=0
*       Plutonium mass enrichment
        CALL THMINP('PUFR',NCH,FRACPU)
      ELSE IF(TEXT.EQ.'POROS') THEN
        ICONDF=0
*       Oxyde porosity
        CALL REDGET(ITYP,NITMA,POROS,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR POROS EXPECTED.')
      ELSE IF(TEXT.EQ.'CONDF') THEN
        IF(ICONDF.EQ.1)DEALLOCATE(KCONDF)
        ICONDF=1
*       Fuel conductivity expressed as a function of fuel temperature
*       (function = polynomial + inverse term)
        CALL REDGET(ITYP,NCONDF,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER FOR CONDF EXPECTED.')
        IF(NCONDF.LT.0)CALL XABORT('@THM: NCONDF MUST BE LARGER OR '
     >                  //'EQUAL TO 0.')
        ALLOCATE(KCONDF(NCONDF+3))
        DO I=1,NCONDF+1
          CALL REDGET(ITYP,NITMA,KCONDF(I),TEXT,DFLOT)
          IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR KCONDF EXPECTED.')
        ENDDO
        CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
        IF(ITYP.NE.3)CALL XABORT('@THM: CHARACTER DATA EXPECTED (INV, '
     >     //'CELSIUS OR KELVIN) IN CONDF STATEMENT.')
        IF(TEXT12.EQ.'INV') THEN
          CALL REDGET(ITYP,NITMA,KCONDF(NCONDF+2),TEXT,DFLOT)
          IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR INV EXPECTED.')
          CALL REDGET(ITYP,NITMA,KCONDF(NCONDF+3),TEXT,DFLOT)
          IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR REF EXPECTED.')
          CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
        ELSE
          KCONDF(NCONDF+2)=0.0 ! Coefficient for the inverse term
          KCONDF(NCONDF+3)=-273.15 ! Reference for the inverse term
        ENDIF
        IF((TEXT12.NE.'CELSIUS').AND.(TEXT12.NE.'KELVIN')) THEN
          CALL XABORT('@THM: UNIT KEYWORD EXPECTED (CELSIUS OR '
     >                //'KELVIN) IN CONDF STATEMENT.')
        ENDIF
        UCONDF=TEXT12
      ELSE IF(TEXT.EQ.'CONDC') THEN
        IF(ICONDC.EQ.1)DEALLOCATE(KCONDC)
        ICONDC=1
*       Clad conductivity expressed as a polynomial of clad temperature
        CALL REDGET(ITYP,NCONDC,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER FOR CONDC EXPECTED.')
        IF(NCONDC.LT.0)CALL XABORT('@THM: NCONDC MUST BE LARGER OR '
     >                  //'EQUAL TO 0.')
        ALLOCATE(KCONDC(NCONDC+1))
        DO I=1,NCONDC+1
          CALL REDGET(ITYP,NITMA,KCONDC(I),TEXT,DFLOT)
          IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR KCONDC EXPECTED.')
        ENDDO
        CALL REDGET(ITYP,NITMA,FLOT,UCONDC,DFLOT)
        IF((ITYP.NE.3).OR.((UCONDC.NE.'CELSIUS').AND.
     >                     (UCONDC.NE.'KELVIN'))) THEN
          CALL XABORT('@THM: UNIT KEYWORD EXPECTED (CELSIUS OR '
     >                //'KELVIN) IN CONDC STATEMENT.')
        ENDIF
      ELSE IF(TEXT.EQ.'HGAP') THEN
        IHGAP=1
*       Fixed, user-chosen value of the HGAP (heat exchange coefficient
*       of the gap) (W/m^2/K)
        CALL REDGET(ITYP,NITMA,KHGAP,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR HGAP EXPECTED.')
      ELSE IF(TEXT.EQ.'HCONV') THEN
        IHCONV=1
*       Fixed, user-chosen value of the HCONV (heat transfer coefficient
*       between clad and fluid) (W/m^2/K)
        CALL REDGET(ITYP,NITMA,KHCONV,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR HCONV EXPECTED.')
      ELSE IF(TEXT.EQ.'TEFF') THEN
*       Surface temperature's weighting factor in effective fuel
*       temperature
        CALL REDGET(ITYP,NITMA,WTEFF,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR TEFF EXPECTED.')
      ELSE IF(TEXT.EQ.'FORCEAVE') THEN
*       Force the use of the average value approximation for fuel
*       conductivity
        IFRCDI=1
      ELSE IF(TEXT.EQ.'MONO') THEN
*       one-phase flow model
        ISUBM=0
      ELSE IF(TEXT.EQ.'BOWR') THEN
*       Bowring's correlation
        ISUBM=1
      ELSE IF(TEXT.EQ.'SAHA') THEN
*       Saha-Zuber correlation
        ISUBM=2
      ELSE IF(TEXT.EQ.'RADIUS') THEN
*       Fuel pellet radius (m)
        CALL REDGET(ITYP,NITMA,RC,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR RC EXPECTED.')
*       Internal clad rod radius (m)
        CALL REDGET(ITYP,NITMA,RIG,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR RIG EXPECTED.')
*       External clad rod radius (m)
        CALL REDGET(ITYP,NITMA,RGG,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR RGG EXPECTED.')
*       Guide tube radius (m)
        CALL REDGET(ITYP,NITMA,RTG,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR RTG EXPECTED.')
      ELSE IF(TEXT.EQ.'ASSMB') THEN
*       Number of active fuel rods
        CALL THMINP('NB-FUEL',NCH,FNFUCST)
*       Number of guide tubes
        CALL THMINP('NB-TUBE',NCH,FNTGCST)
      ELSE IF(TEXT.EQ.'CLUSTER') THEN
*       Hexagonal pitch (m)
        CALL REDGET(ITYP,NITMA,PITCH,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR PITCH EXPECTED.')
*       Number of active fuel pins in cluster
        CALL THMINP('NB-FUEL',NCH,FNFUCST)
      ELSE IF(TEXT.EQ.'CONV') THEN
*       Number of conduction iterations
        CALL REDGET(ITYP,MAXIT1,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER FOR MAXIT1 EXPECTED.')
*       Number of center-pellet iterations
        CALL REDGET(ITYP,MAXIT2,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER FOR MAXIT2 EXPECTED.')
*       Number of flow iterations
        CALL REDGET(ITYP,MAXIT3,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER FOR MAXIT3 EXPECTED.')
*       Temperature maximum error (K)
        CALL REDGET(ITYP,NITMA,ERMAXT,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR ERMAXT EXPECTED.')
*       maximum relative error for the calculation of the properties
*       in the coolant (pressure, enthalpy, density, velocity,...)
        CALL REDGET(ITYP,NITMA,ERMAXC,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR ERMAXC EXPECTED.')
      ELSE IF(TEXT.EQ.'RODMESH') THEN
*       Number of discretisation points in fuel
        CALL REDGET(ITYP,NFD,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER FOR NFD EXPECTED.')
*       Number of discretisation points in fuel rod (fuel+cladding)
        CALL REDGET(ITYP,NDTOT,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER FOR NDTOT EXPECTED.')
      ELSE IF(TEXT.EQ.'RELAX') THEN
*       Relaxation parameter
        CALL REDGET(ITYP,NITMA,RELAX,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR RELAX EXPECTED.')
      ELSE IF(TEXT.EQ.'RAD-PROF') THEN
*       Set radial power profile
        NPRAD=0
        LPRAD=.TRUE.
   30   CALL REDGET(ITYP,NITMA,FLOT,TEXT,DFLOT)
        IF(ITYP.EQ.3)GO TO 20
        NPRAD=NPRAD+1
        RPRAD(NPRAD)=FLOT
        IF(NPRAD.GT.MAXRAD) CALL XABORT('@THM: MAXRAD OVERFLOW.')
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR RAD-PROF-X EXPECTED.')
        IF(RPRAD(NPRAD).LT.0.0)CALL XABORT('@THM: R TOO SMALL.')
        IF(RPRAD(NPRAD).GT.RC)CALL XABORT('@THM: R TOO LARGE.')
        CALL REDGET(ITYP,NITMA,FPRAD(NPRAD),TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR RAD-PROF-F EXPECTED.')
        GO TO 30
      ELSE IF(TEXT.EQ.'POWER-LAW') THEN
*       The total power in W generated in the fuel is defined as
*       T-POWER*TIME-LAW(t).
        CALL REDGET(ITYP,NITMA,TPOW,TEXT12,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR T-POWER EXPECTED.')
        CALL REDGET(ITYP,NPOWER,FLOT,TEXT12,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER VALUE EXPECTED.')
        ALLOCATE(TIMESR(NPOWER),TPOWER(NPOWER))
        DO I=1,NPOWER
          CALL REDGET(ITYP,NITMA,TIMESR(I),TEXT12,DFLOT)
          IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR TIME EXPECTED.')
          CALL REDGET(ITYP,NITMA,TPOWER(I),TEXT12,DFLOT)
          IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR POWER EXPECTED.')
        ENDDO
        CALL LCMPUT(IPTHM,'TIME-SR1',NPOWER,2,TIMESR)
        CALL LCMPUT(IPTHM,'POWER-SR1',NPOWER,2,TPOWER)
        DEALLOCATE(TPOWER,TIMESR)
      ELSE IF(TEXT.EQ.'F-RUG') THEN
*       Rugosity of the fuel rod
        CALL REDGET(ITYP,NITMA,EPSR,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR F-RUG EXPECTED.')
      ELSE IF(TEXT.EQ.'THETA') THEN
*       Angle of the fuel channel
        CALL REDGET(ITYP,NITMA,THETA,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR THETA EXPECTED.')
      ELSE IF(TEXT.EQ.'PDROP') THEN
*       Pressure drop identification
        CALL REDGET(ITYP,IPRES,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER FOR IPRES EXPECTED.')
      ELSE IF(TEXT.EQ.'DFM') THEN
*       Drift Flux Model identification
        CALL REDGET(ITYP,IDFM,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.1)CALL XABORT('@THM: INTEGER FOR IDFM EXPECTED.')
      ELSE IF(TEXT.EQ.'SET-PARAM') THEN
*       Reset a global parameter
        CALL REDGET(ITYP,NITMA,FLOT,TEXT,DFLOT)
        IF(ITYP.NE.3)CALL XABORT('@THM: CHARACTER NAME EXPECTED.')
        CALL REDGET(ITYP,NITMA,VALUE,TEXT,DFLOT)
        IF(ITYP.NE.2)CALL XABORT('@THM: REAL FOR VALUE EXPECTED.')
        JPMAP=LCMGID(IPMAP,'PARAM')
        DO 40 IPAR=1,NPARM
        KPMAP=LCMGIL(JPMAP,IPAR)
        CALL LCMGTC(KPMAP,'P-NAME',12,PNAME)
        CALL LCMGET(KPMAP,'P-TYPE',ITYPE)
        IF(ITYPE.EQ.1) THEN
          IF(PNAME.EQ.TEXT) THEN
            CALL LCMPUT(KPMAP,'P-VALUE',1,2,VALUE)
            IF(IMPX.GT.0) WRITE(6,500) PNAME,VALUE
            GO TO 10
          ELSE
            GO TO 40
          ENDIF
        ELSE IF(ITYPE.EQ.2) THEN
          CALL XABORT('@THM: CANNOT RESET LOCAL PARAMETER: '//TEXT)
        ENDIF
   40   CONTINUE
        CALL XABORT('@THM: GLOBAL PARAMETER NAME NOT FOUND: '//TEXT)
      ELSE IF(TEXT.EQ.';') THEN
        GO TO 60
      ELSE IF(TEXT.EQ.'PICK') THEN
        IPICK=1
        GO TO 60
      ELSE
        CALL XABORT('@THM: INVALID KEYWORD: '//TEXT//'.')
      ENDIF
      GO TO 10
*----
*  TEST DATA INPUT
*----
   60 IF(TINLET.LE.273.15) CALL XABORT('@THM: INLET TEMPERATURE MUST BE'
     > //' HIGHER THAN 273.15K.')
      IF(SPEED.EQ.0.0) CALL XABORT('@THM: ZERO COOLANT SPEED.')
      IF(POULET.EQ.0.0) CALL XABORT('@THM: ZERO OUTLET PRESSURE.')
      IF(RC.EQ.0.0) CALL XABORT('@THM: ZERO FUEL PELLET RADIUS.')
      IF(RIG.EQ.0.0) CALL XABORT('@THM: ZERO INTERNAL CLAD ROD RADIUS.')
      IF(RGG.EQ.0.0) CALL XABORT('@THM: ZERO EXTERNAL CLAD ROD RADIUS.')
      IF(NDTOT.GT.NMAXO) CALL XABORT('@THM: NFD OVERFLOW, TOO MANY FUE'
     > //'L DOMAINS')
      IF(NDTOT.LT.8) CALL XABORT('@THM: NDTOT MUST AT LEAST BE EQUAL T'
     > //'O 8')
      IF(NFD.LT.4) CALL XABORT('@THM: NFD MUST AT LEAST BE EQUAL TO 4')
      IF(NFD.GE.NDTOT) CALL XABORT('@THM: NFD MUST BE LOWER THAN NDTO'
     > //'T.')
      IF((RELAX.LE.0.0).OR.(RELAX.GT.1.0)) CALL XABORT('@THM: RELAX '
     >  //'PARAMETER EXPECTED BETWEEN 0<RELAX<=1.')
      IF((WTEFF.LT.0.0).OR.(WTEFF.GT.1.0)) CALL XABORT('@THM: WTEFF '
     >  //'PARAMETER EXPECTED BETWEEN 0<=WTEFF<=1.')
      IF(ITIME.EQ.1) RELAX=1.0
      IF((RC.NE.RIG).AND.(IFUEL.EQ.1)) CALL XABORT('@THM: WITH MOLTEN'
     > //' SALT FUEL INNER CLAD RADIUS MUST BE EQUAL TO FUEL RADIUS')
*----
*  PRINT CHANNEL-DEPENDENT DATA
*----
      IF(IMPX.GT.1) THEN
        WRITE(6,'(/28H THM: CHANNEL-DEPENDENT DATA)')
        I1=1
        DO I=1,(NCH-1)/8+1
          I2=I1+7
          IF(I2.GT.NCH) I2=NCH
          WRITE(6,'(//8H CHANNEL,8(I8,6X,1H|))') (J,J=I1,I2)
          WRITE(6,'(8H NB-FUEL,8(F10.2,4X,1H|))') (FNFUCST(J),J=I1,I2)
          WRITE(6,'(8H NB-TUBE,8(F10.2,4X,1H|))') (FNTGCST(J),J=I1,I2)
          WRITE(6,'(8H PUFR   ,8(1P,E13.4,2H |))') (FRACPU(J),J=I1,I2)
          I1=I1+8
        ENDDO
      ENDIF
*----
*  SET POWER DISTRIBUTION
*----
      ALLOCATE(FRO(NFD-1))
      IF(NPRAD.EQ.0) THEN
        FRO(:NFD-1)=1.0
      ELSE
        IF(.NOT.LPRAD) THEN
          CALL LCMGET(IPTHM,'RAD-PROF_R',RPRAD)
          CALL LCMGET(IPTHM,'RAD-PROF_F',FPRAD)
        ELSE
          CALL LCMPUT(IPTHM,'RAD-PROF_R',NPRAD,2,RPRAD)
          CALL LCMPUT(IPTHM,'RAD-PROF_F',NPRAD,2,FPRAD)
        ENDIF
        DAR1=0.0
        DELT=0.5*RC**2/REAL(NFD-1)
        DO IM=1,NFD-1
           DAR2=DAR1+DELT
           RADM=SQRT(DAR1+DAR2)
           CALL ALTERP(.FALSE.,NPRAD,RPRAD(1),RADM,.FALSE.,TERP(1))
           DSUM=0.0D0
           DO J=1,NPRAD
             DSUM=DSUM+TERP(J)*FPRAD(J)
           ENDDO
           FRO(IM)=REAL(DSUM)
           DAR1=DAR2
        ENDDO
      ENDIF
      IF(IMPX.GT.1) WRITE(6,480) (FRO(IM),IM=1,NFD-1)
*----
*  RECOVER GEOMAP STATE-VECTOR
*  ISTATE(1): 7 = XYZ, 9 = HEXZ
*  In 3d hexagonal, NY=0, but THM: expects a 3D geometry, so we set
*  NY=1 and  continue.
*---- 
      JPMAP=LCMGID(IPMAP,'GEOMAP')
      CALL LCMGET(JPMAP,'STATE-VECTOR',ISTATE)
      NX=ISTATE(3)
      NY=ISTATE(4)
      NZ=ISTATE(5)
      NEL=ISTATE(6)
      IF((ISTATE(1).EQ.9).AND.(NY.EQ.0)) NY=1
      IF(NX.GT.IMAXO) CALL XABORT('@THM: NX OVERFLOW.')
      IF(NY.GT.JMAXO) CALL XABORT('@THM: NY OVERFLOW.')
      IF(NZ.GT.KMAXO) CALL XABORT('@THM: NZ OVERFLOW.')
      ALLOCATE(PCH(NZ),ACOOL(NZ),HD(NZ))
      ALLOCATE(FNFU(NCH,NZ),FNTG(NCH,NZ),RAPCOOL(NZ),
     > RAPFUEL(NZ),PM(NZ),FFUEL(NZ),FCOOL(NZ))
*----
*  RECOVER REACTOR MESH IN METER
*  The arrays HX, HY, and HZ contain the mesh size in X-, Y-, and
*  Z-direction and are used to determine the volume of a mesh, i.e.
*  V(I,J,K)=HX(I)*HY(J)*HZ(K)
*  For 3D hexagonal, set HX and HY to the square root of the SA surface
*  SASS
*----
      ALLOCATE(XX(NX+1),YY(NY+1),ZZ(NZ+1))
      IF(ISTATE(1).EQ.7) THEN
        CALL LCMGET(JPMAP,'MESHX',XX)
        CALL LCMGET(JPMAP,'MESHY',YY)
      ENDIF
      CALL LCMGET(JPMAP,'MESHZ',ZZ)
      IF(ISTATE(1).EQ.9) THEN
        CALL LCMGET(JPMAP,'SIDE',SIDE)
        SASS=1.5*SQRT(3.0)*SIDE*SIDE/1.0E4
        DO 70 I=1,NX
        HX(I) = SQRT(SASS)
   70   CONTINUE
        DO 80 I=1,NY
        HY(I) = SQRT(SASS)
   80   CONTINUE
      ELSE
        DO 90 I=1,NX
        HX(I)=(XX(I+1)-XX(I))/100.0
   90   CONTINUE
        DO 100 I=1,NY
        HY(I)=(YY(I+1)-YY(I))/100.0
  100   CONTINUE
      ENDIF
      DO 110 I=1,NZ
      HZ(I)=(ZZ(I+1)-ZZ(I))/100.0
  110 CONTINUE
      DO 120 I=1,NZ+1
      ZZ(I)=ZZ(I)/100.0
  120 CONTINUE
      CALL LCMPUT(IPTHM,'MESHZ',NZ+1,2,ZZ)
      DEALLOCATE(ZZ,YY,XX)
*----
*  RECOVER LOCAL PARAMETER INFORMATION FROM L_MAP OBJECT
*----
      ALLOCATE(NUM(NEL),BURN(NCH*NB),PW(NCH*NB))
      CALL LCMGET(IPMAP,'BMIX',NUM)
      CALL LCMLEN(IPMAP,'BURN-INST',ILONG,ITYLCM)
      IF(ILONG.EQ.NCH*NB) THEN
        CALL LCMGET(IPMAP,'BURN-INST',BURN)
      ELSE
        CALL LCMLEN(IPMAP,'BURN-BEG',ILONG,ITYLCM)
        IF(ILONG.NE.NCH*NB) CALL XABORT('@THM: MISSING BURNUP INFO ON '
     >  //'FUELMAP.')
        ALLOCATE(BURN2(NCH*NB))
        CALL LCMGET(IPMAP,'BURN-BEG',BURN)
        CALL LCMGET(IPMAP,'BURN-END',BURN2)
        DO I=1,NCH*NB
          BURN(I)=(BURN(I)+BURN2(I))/2.0
        ENDDO
        DEALLOCATE(BURN2)
      ENDIF
      CALL LCMLEN(IPTHM,'POWER-SR1',NPOWER,ITYLCM)
      IF(NPOWER.NE.0) THEN
*       USE POWER TIME LAW
        IF(IMPX.GT.0) WRITE(6,*) 'THM: T-POWER = ',TPOW,' W'
        IF(TPOW.EQ.0.0) CALL XABORT('@THM: T-POWER NOT DEFINED.')
        IF(NCH.NE.1) CALL XABORT('@THM: NCH=1 EXPECTED.')
        ALLOCATE(TIMESR(NPOWER),TPOWER(NPOWER),DTERP(NPOWER))
        CALL LCMGET(IPTHM,'TIME-SR1',TIMESR)
        CALL LCMGET(IPTHM,'POWER-SR1',TPOWER)
        IF(ITIME.EQ.0) THEN
          CALL ALTERP(.FALSE.,NPOWER,TIMESR(1),RTIME,.FALSE.,DTERP(1))
        ELSE
          IF(DTIME.EQ.0.0) CALL XABORT('@THM: DTIME NOT DEFINED.')
          CALL ALTERI(.FALSE.,NPOWER,TIMESR(1),RTIME,RTIME+DTIME,
     >    DTERP(1))
          DO J=1,NPOWER
            DTERP(J)=DTERP(J)/DTIME
          ENDDO
        ENDIF
        DPOW=0.0D0
        DO J=1,NPOWER
          DPOW=DPOW+DTERP(J)*TPOWER(J)
        ENDDO
        DPOW=DPOW*TPOW
        DEALLOCATE(DTERP,TPOWER,TIMESR)
        CALL LCMLEN(IPMAP,'AXIAL-FPW',ILONG,ITYLCM)
        IF(ILONG.NE.NB) CALL XABORT('THM: NO AXIAL-FPW ON THE FUELMAP')
        ALLOCATE(PFORM(NB))
        CALL LCMGET(IPMAP,'AXIAL-FPW',PFORM)
        DO I=1,NB
          PW(I)=DPOW*PFORM(I)*1.0E-3
        ENDDO
        DEALLOCATE(PFORM)
      ELSE
*       RECOVER POWER FROM FUELMAP
        CALL LCMGET(IPMAP,'BUND-PW',PW)
      ENDIF
      IF(IMPX.GT.2) THEN
        PTOT=0.0
        DO I=1,NCH*NB
          PTOT=PTOT+PW(I)
        ENDDO
      ENDIF
*----
*  REBUILD LOCAL PARAMETER INFORMATION FOR THM
*----
      ALLOCATE(IREFSC(NCH))
      CALL LCMLEN(IPMAP,'REF-SCHEME',ILONG,ITYLCM)
      IF(ILONG.EQ.NCH) THEN
        CALL LCMGET(IPMAP,'REF-SCHEME',IREFSC)
      ELSE
        IREFSC(:NCH)=1
      ENDIF
      ALLOCATE(XBURN(NZ,NX,NY),POW(NZ,NX,NY))
      XBURN(:NZ,:NX,:NY)=0.0
      POW(:NZ,:NX,:NY)=0.0
      ICH=0
      DO 165 IY=1,NY
      DO 160 IX=1,NX
      IEL=(IY-1)*NX+IX
      DO 130 IZ=1,NZ
      IF(NUM((IZ-1)*NX*NY+IEL).NE.0) GO TO 140
  130 CONTINUE
      GO TO 160
  140 ICH=ICH+1
      IB=0
      DO 150 IZ=1,NZ
      IF(NUM((IZ-1)*NX*NY+IEL).EQ.0) GO TO 150
      IB=IB+1
      IMA=(IB-1)*NCH+ICH
      IF(IREFSC(ICH).GT.0) THEN
        XBURN(IZ,IX,IY)=BURN(IMA)
        POW(IZ,IX,IY)=PW(IMA)*1.0E3
      ELSE
        XBURN(NZ-IZ+1,IX,IY)=BURN(IMA)
        POW(NZ-IZ+1,IX,IY)=PW(IMA)*1.0E3
      ENDIF
  150 CONTINUE
      IF(IB.NE.NB) CALL XABORT('@THM: INVALID NUMBER OF BUNDLES.')
  160 CONTINUE
  165 CONTINUE
      IF(ICH.NE.NCH) CALL XABORT('@THM: INVALID NUMBER OF CHANNELS.')
      DEALLOCATE(PW,BURN)
*----
*  RECOVER AVERAGE FUEL TEMPERATURE FIELD FROM THM OBJECT
*----
      ALLOCATE(TCOMB(NZ,NX,NY))
      TCOMB(:NZ,:NX,:NY)=0.0
      JPMAP=LCMGID(IPMAP,'PARAM')
      DO 220 IPAR=1,NPARM
      KPMAP=LCMGIL(JPMAP,IPAR)
      CALL LCMGTC(KPMAP,'P-NAME',12,PNAME)
      IF(PNAME.EQ.'T-FUEL') THEN
        CALL LCMGET(KPMAP,'P-TYPE',ITYPE)
        ALLOCATE(VAL(NCH,NB))
        IF(ITYPE.EQ.1) THEN
          IF(IMPX.GT.0) WRITE(6,510) 'GLOBAL',PNAME
          CALL LCMGET(KPMAP,'P-VALUE',FLOT)
          DO 175 ICH=1,NCH
          DO 170 IB=1,NB
          VAL(ICH,IB)=FLOT
  170     CONTINUE
  175     CONTINUE
        ELSE IF(ITYPE.EQ.2) THEN
          IF(IMPX.GT.0) WRITE(6,510) 'LOCAL',PNAME
          CALL LCMGET(KPMAP,'P-VALUE',VAL)
        ENDIF
        ICH=0
        DO 215 IY=1,NY
        DO 210 IX=1,NX
        IEL=(IY-1)*NX+IX
        DO 180 IZ=1,NZ
        IF(NUM((IZ-1)*NX*NY+IEL).NE.0) GO TO 190
  180   CONTINUE
        GO TO 210
  190   ICH=ICH+1
        IB=0
        DO 200 IZ=1,NZ
        IF(NUM((IZ-1)*NX*NY+IEL).EQ.0) GO TO 200
        IB=IB+1
        IF(IREFSC(ICH).GT.0) THEN
          TCOMB(IZ,IX,IY)=VAL(ICH,IB)
        ELSE
          TCOMB(NZ-IZ+1,IX,IY)=VAL(ICH,IB)
        ENDIF
  200   CONTINUE
  210   CONTINUE
  215   CONTINUE
        DEALLOCATE(VAL)
      ENDIF
  220 CONTINUE
      DEALLOCATE(IREFSC)
*---- 
*  TEST TO COMPUTE STEADY-STATE OR TRANSIENT CALCULATION
*----
      IF(ITIME.EQ.0) THEN
         GO TO 230
      ELSE IF(ITIME.EQ.1) THEN
         GO TO 310
      ELSE
         CALL XABORT('@THM: UNEXPECTED VALUE FOR ITIME.')
      ENDIF
*----
*  CALL DRIVER FOR STEADY-STATE CALCULATION
*----
*     memory allocation for the steady-state calculation
  230 ALLOCATE(DCOOL(NZ,NX,NY),TCOOL(NZ,NX,NY),TSURF(NZ,NX,NY),
     > PCOOL(NZ,NX,NY),HCOOL(NZ,NX,NY),RAD((NDTOT-1),NZ,NX,NY))
      DCOOL(:NZ,:NX,:NY)=0.0
      TCOOL(:NZ,:NX,:NY)=0.0
      TSURF(:NZ,:NX,:NY)=0.0
      PCOOL(:NZ,:NX,:NY)=0.0
      HCOOL(:NZ,:NX,:NY)=0.0
      RAD(:NDTOT-1,:NZ,:NX,:NY)=0.0
*----
*  COMPUTE FUEL RADII
*----
      ALLOCATE(RVAL((NDTOT-1),NZ))
      IF(JENTRY(1).EQ.0) THEN
        WRITE(6,*)'RC,RIG=',RC,RIG
*CGT THERE IS GAP
        IF(RC.NE.RIG) THEN
          IGAP=0
          ARF=0.5*RC**2  ! at fuel radius
          ARCI=0.5*RIG**2 ! at internal clad radius
          ARCE=0.5*RGG**2 ! at external clad radius
          DARF=ARF/REAL(NFD-1)
          DARC=(ARCE-ARCI)/REAL(NDTOT-NFD-2)
          DO IEL=1,NZ
            RVAL(1,IEL)=0.0
            DO I=1,NFD-1
              RVAL(I+1,IEL)=REAL(SQRT(2.0D0*REAL(I)*DARF))
            ENDDO
            DO I=NFD+1,NDTOT-1
              RVAL(I,IEL)=REAL(SQRT(2.0D0*(ARCI+REAL(I-NFD-1)*DARC)))
            ENDDO
          ENDDO
        ELSE
*CGT NO GAP
          IGAP=1
          ARF=0.5*RC**2  ! at fuel radius
          ARCE=0.5*RGG**2 ! at external clad radius
          DARF=ARF/REAL(NFD-1)
          DARC=(ARCE-ARF)/REAL(NDTOT-NFD-1)
          DO IEL=1,NZ
            RVAL(1,IEL)=0.0
            DO I=1,NFD
              RVAL(I+1,IEL)=REAL(SQRT(2.0D0*REAL(I)*DARF))
            ENDDO
            DO I=NFD+1,NDTOT-1
              RVAL(I,IEL)=REAL(SQRT(2.0D0*(ARF+REAL(I-NFD)*DARC)))
            ENDDO
          ENDDO
        ENDIF
        CALL LCMPUT(IPTHM,'REF-RAD',(NDTOT-1)*NZ,2,RVAL)
        JPTHM=LCMDID(IPTHM,'HISTORY-DATA')
        KPTHM=LCMDID(JPTHM,'TIMESTEP0000')
        LPTHM=LCMLID(KPTHM,'CHANNEL',NCH)
      ELSE
        JPTHM=LCMGID(IPTHM,'HISTORY-DATA')
        KPTHM=LCMGID(JPTHM,'TIMESTEP0000')
        LPTHM=LCMGID(KPTHM,'CHANNEL')
      ENDIF
*----
*  LOOP OVER REACTOR CHANNELS
*----
      ICH=0
      SUMSEC=0.0
      DO 265 IY=1,NY
      DO 260 IX=1,NX
        IEL=IX+(IY-1)*NX
        DO 240 IZ=1,NZ
          IF(NUM((IZ-1)*NX*NY+IEL).NE.0) GO TO 250
  240   CONTINUE
        GO TO 260
  250   ICH=ICH+1
*----
*  COMPUTE HYDRAULICS CONSTANTS
*  SASS:    assembly cross section in m^2
*  RC:      fuel pellet radius in m
*  RTG:     guide tube radius in m
*  ACOOL:   coolant cross section per assembly in m^2
*  RAPCOOL: assembly over coolant volumic ratio
*  RAPFUEL: assembly over fuel volumic ratio
*  FCOOL:   power density fraction in coolant.
*  FFUEL:   power density fraction in fuel.
*  PCH:     heating perimeter in m
*  PM:      perimeter in contact with flow in m
*  HD:      hydraulic diameter of one assembly in m
*  SPEED:   inlet flow velocity in m/s
*----
        IF(FNFUCST(ICH).EQ.0.0) GO TO 260
        SASS=HX(IX)*HY(IY)
        DO K=1, NZ
          FNFU(ICH,K)=FNFUCST(ICH)
          FNTG(ICH,K)=FNTGCST(ICH)
        IF(PITCH.EQ.0.0) THEN
*         PWR ASSEMBLY
          ACOOL(K)=SASS-FNFU(ICH,K)*PI*RGG*RGG-FNTG(ICH,K)*PI*RTG*RTG
          RAPCOOL(K)=SASS/ACOOL(K)
          PCH(K)=FNFU(ICH,K)*2.0*PI*RGG
          PM=PCH(K)+FNTG(ICH,K)*2.0*PI*RTG
          SUMSEC=SUMSEC+ACOOL(K)
        ELSE
*         CANDU CLUSTER
          ATOTHEX=3.0*PITCH**2.0*(3.0)**0.5/2.0
          ATIGEHEX=3.0*PI*RGG*RGG
          ACOOL(K)=ATOTHEX-ATIGEHEX
          PM(K)=6.0*PI*RGG
          PCH(K)=PM(K)
          RAPCOOL(K)=3.0*SASS/(FNFU(ICH,K)*ACOOL(K))
          SUMSEC=SUMSEC+FNFU(ICH,K)*ACOOL(K)/3.0
        ENDIF
        RAPFUEL(K)=SASS/(FNFU(ICH,K)*PI*RC*RC)
        FCOOL(K)=(1.0-FPUISS)*RAPCOOL(K)
        FFUEL(K)=FPUISS*RAPFUEL(K)
        HD(K)=4.0*ACOOL(K)/PM(K)
        IF(HD(K).LE.0.) CALL XABORT('THM: NEGATIVE HYDRAULIC 
     >DIAMETER(1).')
        ENDDO
*----
*  RECOVER STEADY-STATE RADII
*----
        IF(JENTRY(1).EQ.0) THEN
          RAD(:,:,IX,IY)=RVAL(:,:)
        ELSE IF(JENTRY(1).EQ.1) THEN
          MPTHM=LCMGIL(LPTHM,ICH)
          CALL LCMGET(MPTHM,'RADII',RAD(1,1,IX,IY))
        ENDIF
*----
*  EXECUTION OF THE STEADY-STATE DRIVER PROGRAM
*----
        MPTHM=LCMDIL(LPTHM,ICH)
        CALL THMDRV(MPTHM,IMPX,IX,IY,NZ,XBURN(1,IX,IY),SASS,HZ,CFLUX,
     >  POROS,FNFU(ICH,:),NFD,NDTOT,IFLUID,SNAME,SCOMP,IGAP,IFUEL,FNAME,
     >  FCOMP,FCOOL,FFUEL,ACOOL,
     >  HD,PCH,RAD(1,1,IX,IY),MAXIT1,MAXIT2,ERMAXT,SPEED,TINLET,POULET,
     >  FRACPU(ICH),ICONDF,NCONDF,KCONDF,UCONDF,ICONDC,NCONDC,KCONDC,
     >  UCONDC,IHGAP,KHGAP,IHCONV,KHCONV,WTEFF,IFRCDI,ISUBM,FRO,
     >  POW(1,IX,IY),IPRES,IDFM,TCOMB(1,IX,IY),DCOOL(1,IX,IY),
     >  TCOOL(1,IX,IY),TSURF(1,IX,IY),HCOOL(1,IX,IY),PCOOL(1,IX,IY))
  260 CONTINUE
  265 CONTINUE
      IF(IMPX.GT.1) WRITE(6,610) SUMSEC,CWSECT
      DEALLOCATE(RVAL)
      CALL LCMPUT(KPTHM,'TIME',1,2,RTIME)
      IF(IMPX.GT.1) WRITE(6,470) 'TIMESTEP0000',RTIME
*----
*  PRINT AVERAGED THERMALHYDRAULICS PROPERTIES OVER THE CORE MAP
*----
      IF(IMPX.GT.1) THEN
        CALL THMAVG(IPMAP,IMPX,NX,NY,NZ,NCH,TCOMB,TSURF,DCOOL,TCOOL,
     >  PCOOL,HCOOL,POW,NSIMS)
      ENDIF
      DEALLOCATE(RAD,HCOOL)
      GO TO 400
*----
* CALL DRIVER FOR TRANSIENT CALCULATION
*----
*     memory allocation for the transient calculation
  310 ALLOCATE(TSURF(NZ,NX,NY),TCOOL(NZ,NX,NY),DCOOL(NZ,NX,NY),
     > PCOOL(NZ,NX,NY))
      TSURF(:NZ,:NX,:NY)=0.0
      TCOOL(:NZ,:NX,:NY)=0.0
      DCOOL(:NZ,:NX,:NY)=0.0
      PCOOL(:NZ,:NX,:NY)=0.0
*----
*  RECOVER TIME INDEX AT INITIAL CONDITIONS
*----
      JPTHM=LCMDID(IPTHM,'HISTORY-DATA')
      KPTHMI=LCMGID(JPTHM,'TIMESTEP0000')
      CALL LCMGET(KPTHMI,'TIME',TIMEPR)
      IF(ABS(RTIME-TIMEPR).LE.1.0E-3*DTIME) THEN
        TIMEIT=1
      ELSE
        DO I=1,TIMEIT
          WRITE(TXTDIR,'(8HTIMESTEP,I4.4)') I
          KPTHMI=LCMGID(JPTHM,TXTDIR)
          CALL LCMGET(KPTHMI,'TIME',TIMEPR)
          IF(ABS(RTIME-TIMEPR).LE.1.0E-3*DTIME) THEN
            TIMEIT=I+1
            GO TO 315
          ENDIF
        ENDDO
        WRITE(HSMG,'(45H@THM: UNABLE TO FIND INITIAL CONDITIONS AT T=,
     >  1P,E14.4,3H S.)') RTIME
        CALL XABORT(HSMG)
      ENDIF
  315 LPTHMI=LCMGID(KPTHMI,'CHANNEL')
      WRITE(TXTDIR,'(8HTIMESTEP,I4.4)') TIMEIT
      KPTHM=LCMDID(JPTHM,TXTDIR)
      LPTHM=LCMLID(KPTHM,'CHANNEL',NCH)
      IF(IMPX.GT.1) WRITE(6,530) TIMEIT,RTIME,RTIME+DTIME
*----
*  LOOP OVER REACTOR CHANNELS
*----
      ICH=0
      DO 355 IY=1,NY
      DO 350 IX=1,NX
        IEL=IX+(IY-1)*NX
        DO 320 IZ=1,NZ
          IF(NUM((IZ-1)*NX*NY+IEL).NE.0) GO TO 330
  320   CONTINUE
        GO TO 350
  330   ICH=ICH+1
*----
*  COMPUTE HYDRAULICS CONSTANTS
*----
        IF(FNFUCST(ICH).EQ.0.0) GO TO 350
        SASS=HX(IX)*HY(IY)
        DO K=1, NZ
          FNFU(ICH,K)=FNFUCST(ICH)
          FNTG(ICH,K)=FNTGCST(ICH)
        IF(PITCH.EQ.0.0) THEN
*         PWR ASSEMBLY
          ACOOL(K)=SASS-FNFU(ICH,K)*PI*RGG*RGG-FNTG(ICH,K)*PI*RTG*RTG
          RAPCOOL(K)=SASS/ACOOL(K)
          PCH(K)=FNFU(ICH,K)*2.0*PI*RGG
          PM=PCH(K)+FNTG(ICH,K)*2.0*PI*RTG
        ELSE
*         CANDU CLUSTER
          ATOTHEX=3.0*PITCH**2.0*(3.0)**0.5/2.0
          ATIGEHEX=3.0*PI*RGG*RGG
          ACOOL(K)=ATOTHEX-ATIGEHEX
          PM(K)=6.0*PI*RGG
          PCH(K)=PM(K)
          RAPCOOL(K)=3.0*SASS/(FNFU(ICH,K)*ACOOL(K))
        ENDIF
        RAPFUEL(K)=SASS/(FNFU(ICH,K)*PI*RC*RC)
        FCOOL(K)=(1.0-FPUISS)*RAPCOOL(K)
        FFUEL(K)=FPUISS*RAPFUEL(K)
        HD(K)=4.0*ACOOL(K)/PM(K)
        IF(HD(K).LE.0.) CALL XABORT('THM: NEGATIVE HYDRAULIC 
     >DIAMETER(2).')
        ENDDO
*----
*  EXECUTION OF THE TRANSIENT DRIVER PROGRAM
*----
        MPTHMI=LCMGIL(LPTHMI,ICH)
        MPTHM=LCMDIL(LPTHM,ICH)
        CALL THMTRS(MPTHMI,MPTHM,IMPX,IX,IY,NZ,XBURN(1,IX,IY),SASS,HZ,
     >  DTIME,CFLUX,POROS,FNFU(ICH,:),NFD,NDTOT,IFLUID,SNAME,SCOMP,
     >  IGAP,IFUEL,FNAME,FCOMP,   
     >  FCOOL,FFUEL,ACOOL,HD,PCH,MAXIT3,MAXIT1,MAXIT2,ERMAXT,ERMAXC,
     >  SPEED,TINLET,POULET,FRACPU(ICH),ICONDF,NCONDF,KCONDF,UCONDF,
     >  ICONDC,NCONDC,KCONDC,UCONDC,IHGAP,KHGAP,IHCONV,KHCONV,WTEFF,
     >  IFRCDI,ISUBM,FRO,POW(1,IX,IY),TCOMB(1,IX,IY),DCOOL(1,IX,IY),
     >  TCOOL(1,IX,IY),TSURF(1,IX,IY))
  350 CONTINUE
  355 CONTINUE
      CALL LCMPUT(KPTHM,'TIME',1,2,RTIME+DTIME)
      IF(IMPX.GT.1) WRITE(6,470) TXTDIR,RTIME+DTIME
*----
*  RECOVER LOCAL PARAMETER INFORMATION COMPUTED BY THMDRV OR THMTRS
*----
  400 ERRA1=0.0
      ERRA2=0.0
      ERRA3=0.0
      ERRBB=0.0
      ZMINA1=1.0E10
      ZMINA2=1.0E10
      ZMINA3=1.0E10
      ZMINBB=1.0E10
      ZMAXA1=0.0
      ZMAXA2=0.0
      ZMAXA3=0.0
      ZMAXBB=0.0
      RATIOX=0.0
      ALLOCATE(IREFSC(NCH))
      CALL LCMLEN(IPMAP,'REF-SCHEME',ILONG,ITYLCM)
      IF(ILONG.EQ.NCH) THEN
        CALL LCMGET(IPMAP,'REF-SCHEME',IREFSC)
      ELSE
        IREFSC(:NCH)=1
      ENDIF
      JPMAP=LCMGID(IPMAP,'PARAM')
      DO 460 IPAR=1,NPARM
      KPMAP=LCMGIL(JPMAP,IPAR)
      CALL LCMGTC(KPMAP,'P-NAME',12,PNAME)
      IF((PNAME.EQ.'T-FUEL').OR.(PNAME.EQ.'D-COOL').OR.
     1   (PNAME.EQ.'T-COOL').OR.(PNAME.EQ.'T-SURF').OR.
     2   (PNAME.EQ.'P-COOL')) THEN
        CALL LCMGET(KPMAP,'P-TYPE',ITYPE)
        ALLOCATE(VAL(NCH,NB))
        RELAX0=1.0
        IF(ITYPE.EQ.1) THEN
          IF(IMPX.GT.0) WRITE(6,510) 'GLOBAL',PNAME
          CALL LCMGET(KPMAP,'P-VALUE',FLOT)
          DO 415 ICH=1,NCH
          DO 410 IB=1,NB
          VAL(ICH,IB)=FLOT
  410     CONTINUE
  415     CONTINUE
        ELSE IF(ITYPE.EQ.2) THEN
          RELAX0=RELAX
          IF(IMPX.GT.0) WRITE(6,510) 'LOCAL',PNAME
          CALL LCMGET(KPMAP,'P-VALUE',VAL)
        ENDIF
        ICH=0
        DO 455 IY=1,NY
        DO 450 IX=1,NX
        IEL=(IY-1)*NX+IX
        DO 420 IZ=1,NZ
        IF(NUM((IZ-1)*NX*NY+IEL).NE.0) GO TO 430
  420   CONTINUE
        GO TO 450
  430   ICH=ICH+1
        IB=0
        DO 440 IZ=1,NZ
        IF(NUM((IZ-1)*NX*NY+IEL).EQ.0) GO TO 440
        IB=IB+1
        FLOT=0.0
        IF(PNAME.EQ.'T-FUEL') THEN
          IF(IREFSC(ICH).GT.0) THEN
            FLOT=RELAX0*TCOMB(IZ,IX,IY)+(1.0-RELAX0)*VAL(ICH,IB)
          ELSE
            FLOT=RELAX0*TCOMB(NZ-IZ+1,IX,IY)+(1.0-RELAX0)*VAL(ICH,IB)
          ENDIF
          IF(ITIME.EQ.0) ERRA1=MAX(ERRA1,ABS(VAL(ICH,IB)-FLOT))
          ZMINA1=MIN(ZMINA1,FLOT)
          ZMAXA1=MAX(ZMAXA1,FLOT)
        ELSE IF(PNAME.EQ.'D-COOL') THEN
          IF(IREFSC(ICH).GT.0) THEN
            FLOT=RELAX0*DCOOL(IZ,IX,IY)/ZKILO+(1.0-RELAX0)*VAL(ICH,IB)
          ELSE
            FLOT=RELAX0*DCOOL(NZ-IZ+1,IX,IY)/ZKILO+(1.0-RELAX0)
     >      *VAL(ICH,IB)
          ENDIF
          IF(ITIME.EQ.0) ERRA2=MAX(ERRA2,ABS(VAL(ICH,IB)-FLOT))
          ZMINA2=MIN(ZMINA2,FLOT)
          ZMAXA2=MAX(ZMAXA2,FLOT)
        ELSE IF(PNAME.EQ.'T-COOL') THEN
          IF(IREFSC(ICH).GT.0) THEN
            FLOT=RELAX0*TCOOL(IZ,IX,IY)+(1.0-RELAX0)*VAL(ICH,IB)
          ELSE
            FLOT=RELAX0*TCOOL(NZ-IZ+1,IX,IY)+(1.0-RELAX0)*VAL(ICH,IB)
          ENDIF
          IF(ITIME.EQ.0) ERRA3=MAX(ERRA3,ABS(VAL(ICH,IB)-FLOT))
          ZMINA3=MIN(ZMINA3,FLOT)
          ZMAXA3=MAX(ZMAXA3,FLOT)
        ELSE IF(PNAME.EQ.'T-SURF') THEN
          IF(IREFSC(ICH).GT.0) THEN
            FLOT=RELAX0*TSURF(IZ,IX,IY)+(1.0-RELAX0)*VAL(ICH,IB)
          ELSE
            FLOT=RELAX0*TSURF(NZ-IZ+1,IX,IY)+(1.0-RELAX0)*VAL(ICH,IB)
          ENDIF
          IF(ITIME.EQ.0) ERRBB=MAX(ERRBB,ABS(VAL(ICH,IB)-FLOT))
          ZMINBB=MIN(ZMINBB,FLOT)
          ZMAXBB=MAX(ZMAXBB,FLOT)
        ELSE IF(PNAME.EQ.'P-COOL') THEN
          IF(IREFSC(ICH).GT.0) THEN
            FLOT=RELAX0*PCOOL(IZ,IX,IY)+(1.0-RELAX0)*VAL(ICH,IB)
          ELSE
            FLOT=RELAX0*PCOOL(NZ-IZ+1,IX,IY)+(1.0-RELAX0)*VAL(ICH,IB)
          ENDIF
          IF(ITIME.EQ.0) ERRA4=MAX(ERRBB,ABS(VAL(ICH,IB)-FLOT))
          ZMINA4=MIN(ZMINBB,FLOT)
          ZMAXA4=MAX(ZMAXBB,FLOT)
        ELSE
          CALL XABORT('@THM: INVALID PARAMETER TYPE: '// PNAME//'.')
        ENDIF
        VAL(ICH,IB)=FLOT
  440   CONTINUE
  450   CONTINUE
  455   CONTINUE
        ITYPE=2
        CALL LCMPUT(KPMAP,'P-TYPE',1,1,ITYPE)
        CALL LCMPUT(KPMAP,'P-VALUE',NCH*NB,2,VAL)
        CALL LCMLEN(IPMAP,'AXIAL-FPW',JLONG,ITYLCM)
        DD1=0.0
        DD2=0.0
        IF(JLONG.NE.0) THEN
          ALLOCATE(FPOWER(NB))
          IF(JLONG.NE.NB) CALL XABORT('THM: UNABLE TO FIND RECORD AXIA'
     1    //'L-FPW IN THE FUELMAP.')
          CALL LCMGET(IPMAP,'AXIAL-FPW',FPOWER)
          DO ICH=1,NCH
            DO IB=1,NB
              DD1=DD1+VAL(ICH,IB)*FPOWER(IB)**2
              DD2=DD2+FPOWER(IB)**2
            ENDDO
          ENDDO
          DEALLOCATE(FPOWER)
        ELSE
          ALLOCATE(PW(NCH*NB))
          CALL LCMGET(IPMAP,'BUND-PW',PW)
          ITOT=0
          DO IB=1,NB
            DO ICH=1,NCH
              ITOT=ITOT+1
              DD1=DD1+VAL(ICH,IB)*PW(ITOT)**2
              DD2=DD2+PW(ITOT)**2
            ENDDO
          ENDDO
          DEALLOCATE(PW)
        ENDIF
        TMOY0=DD1/DD2
        TEXT12='AVG-'//PNAME(:8)
        CALL LCMLEN(IPTHM,TEXT12,KLONG,ITYLCM)
        IF(((PNAME.EQ.'T-FUEL').OR.(PNAME.EQ.'T-COOL').OR.
     1  (PNAME.EQ.'P-COOL')).AND.(KLONG.GT.0)) THEN
          CALL LCMGET(IPTHM,TEXT12,TMOY0I)
          IF(PNAME.EQ.'T-FUEL') THEN
            RATIO=ABS(TMOY0/DTEMPR-TMOY0I/DTEMPR)
            IF(IMPX.GT.0) WRITE(6,490) TEXT12,TMOY0I,TMOY0,RATIO
            RATIOX=MAX(RATIOX,RATIO)
          ELSE IF(PNAME.EQ.'T-COOL') THEN
            RATIO=ABS(TMOY0/DTEMPT-TMOY0I/DTEMPT)
            IF(IMPX.GT.0) WRITE(6,490) TEXT12,TMOY0I,TMOY0,RATIO
            RATIOX=MAX(RATIOX,RATIO)
          ELSE IF(PNAME.EQ.'P-COOL') THEN
            RATIO=ABS(TMOY0/DPRESS-TMOY0I/DPRESS)
            IF(IMPX.GT.0) WRITE(6,490) TEXT12,TMOY0I,TMOY0,RATIO
            RATIOX=MAX(RATIOX,RATIO)
          ENDIF
        ENDIF
        CALL LCMPUT(IPTHM,TEXT12,1,2,TMOY0)
        DEALLOCATE(VAL)
      ENDIF
      IF(PNAME.EQ.'T-FUEL') THEN
        IF(ITIME.EQ.0) CALL LCMPUT(IPTHM,'ERROR-T-FUEL',1,2,ERRA1)
        CALL LCMPUT(IPTHM,'MIN-T-FUEL',1,2,ZMINA1)
        CALL LCMPUT(IPTHM,'MAX-T-FUEL',1,2,ZMAXA1)
        IF(IMPX.GT.0) WRITE(6,520) 'FUEL TEMPERATURE',ERRA1,'K',
     1  ZMINA1,'K',ZMAXA1,'K'
      ELSE IF(PNAME.EQ.'D-COOL') THEN
        IF(ITIME.EQ.0) CALL LCMPUT(IPTHM,'ERROR-D-COOL',1,2,ERRA2)
        CALL LCMPUT(IPTHM,'MIN-D-COOL',1,2,ZMINA2)
        CALL LCMPUT(IPTHM,'MAX-D-COOL',1,2,ZMAXA2)
        IF(IMPX.GT.0) WRITE(6,520) 'COOLANT DENSITY',ERRA2,'g/cc',
     1  ZMINA2,'g/cc',ZMAXA2,'g/cc'
      ELSE IF(PNAME.EQ.'T-COOL') THEN
        IF(ITIME.EQ.0) CALL LCMPUT(IPTHM,'ERROR-T-COOL',1,2,ERRA3)
        CALL LCMPUT(IPTHM,'MIN-T-COOL',1,2,ZMINA3)
        CALL LCMPUT(IPTHM,'MAX-T-COOL',1,2,ZMAXA3)
        IF(IMPX.GT.0) WRITE(6,520) 'COOLANT TEMPERATURE',ERRA3,'K',
     1  ZMINA3,'K',ZMAXA3,'K'
      ELSE IF(PNAME.EQ.'T-SURF') THEN
        IF(ITIME.EQ.0) CALL LCMPUT(IPTHM,'ERROR-T-SURF',1,2,ERRBB)
        IF(IMPX.GT.0) WRITE(6,520) 'FUEL SURFACE TEMPERATURE',ERRBB,
     1  'K',ZMINBB,'K',ZMAXBB,'K'
      ELSE IF(PNAME.EQ.'P-COOL') THEN
        IF(ITIME.EQ.0) CALL LCMPUT(IPTHM,'ERROR-P-COOL',1,2,ERRA4)
        CALL LCMPUT(IPTHM,'MIN-P-COOL',1,2,ZMINA4)
        CALL LCMPUT(IPTHM,'MAX-P-COOL',1,2,ZMAXA4)
        IF(IMPX.GT.0) WRITE(6,520) 'COOLANT PRESSURE',ERRA4,'Pa',
     1  ZMINA4,'Pa',ZMAXA4,'Pa'
      ENDIF
  460 CONTINUE
      DEALLOCATE(IREFSC)
*----
*  SAVE CONDUCTIVITY INFORMATION ON LCM OBJECT THM
*----
      IF(ICONDF.EQ.1) THEN
        CALL LCMPUT(IPTHM,'KCONDF',NCONDF+3,2,KCONDF)
        CALL LCMPTC(IPTHM,'UCONDF',12,UCONDF)
      ENDIF
      IF(ICONDC.EQ.1) THEN
        CALL LCMPUT(IPTHM,'KCONDC',NCONDC+1,2,KCONDC)
        CALL LCMPTC(IPTHM,'UCONDC',12,UCONDC)
      ENDIF
*----
*  RELEASE MEMORY
*----
      DEALLOCATE(ACOOL,PCH,HD)
      DEALLOCATE(RAPCOOL,RAPFUEL,PM,FNFU,FNTG,FFUEL,FCOOL)
      DEALLOCATE(PCOOL,DCOOL,TCOOL,TSURF,TCOMB)
      DEALLOCATE(NUM)
      DEALLOCATE(POW,XBURN)
      DEALLOCATE(FRO)
      IF(ICONDF.EQ.1)DEALLOCATE(KCONDF)
      IF(ICONDC.EQ.1)DEALLOCATE(KCONDC)
*----
*  STATE-VECTOR FOR THM
*----
      HSIGN='L_THM'
      CALL LCMPTC(IPTHM,'SIGNATURE',12,HSIGN)
      ISTATE(:NSTATE)=0
      ISTATE(1)=NCH
      ISTATE(2)=NZ
      ISTATE(3)=MAXIT1
      ISTATE(4)=MAXIT2
      ISTATE(5)=MAXIT3
      ISTATE(6)=NFD
      ISTATE(7)=NDTOT
      ISTATE(8)=ITIME
      ISTATE(9)=TIMEIT
      ISTATE(10)=IHGAP
      ISTATE(11)=IHCONV
      ISTATE(12)=ICONDF
      ISTATE(13)=ICONDC
      ISTATE(14)=IFRCDI
      ISTATE(15)=ISUBM
      IF(ICONDF.EQ.1) ISTATE(16)=NCONDF
      IF(ICONDC.EQ.1) ISTATE(17)=NCONDC
      ISTATE(18)=NPRAD
      ISTATE(19)=NPOWER
      ISTATE(20)=IFLUID
      ISTATE(21)=IGAP
      ISTATE(22)=IPRES
      ISTATE(23)=IDFM
      CALL LCMPUT(IPTHM,'STATE-VECTOR',NSTATE,1,ISTATE)
      STATE(:NSTATE)=0.0
      STATE(1)=DTIME
      STATE(2)=FPUISS
      STATE(3)=CFLUX
      STATE(4)=SPEED
      STATE(5)=POULET
      STATE(6)=TINLET
      STATE(7)=POROS
      STATE(8)=RC
      STATE(9)=RIG
      STATE(10)=RGG
      STATE(11)=RTG
      STATE(12)=PITCH
      STATE(13)=ERMAXT
      STATE(14)=ERMAXC
      STATE(15)=RELAX
      STATE(16)=RTIME
      IF(IHGAP.EQ.1) STATE(17)=KHGAP
      IF(IHCONV.EQ.1) STATE(18)=KHCONV
      STATE(19)=WTEFF
      STATE(20)=TPOW
      STATE(21)=RATIOX
      STATE(22)=EPSR
      STATE(23)=THETA
      CALL LCMPUT(IPTHM,'REAL-PARAM',NSTATE,2,STATE)
      IF(IMPX.GT.0) THEN
         WRITE(6,540) ISTATE(:15),ISTATE(18:23)
         IF(ISTATE(10).EQ.1) WRITE(6,550) (ISTATE(16))
         IF(ISTATE(11).EQ.1) WRITE(6,560) (ISTATE(17))
         WRITE(6,570) STATE(:16),STATE(19),STATE(21:23)
         IF(ISTATE(10).EQ.1) WRITE(6,580) (STATE(17))
         IF(ISTATE(11).EQ.1) WRITE(6,590) (STATE(18))
         IF(ISTATE(19).GT.0) WRITE(6,600) (STATE(20))
      ENDIF
      IF(IMPX.GT.4) CALL LCMLIB(IPTHM)
*----
*  SAVE CELL-DEPENDENT DATA
*----
      CALL LCMPUT(IPTHM,'NB-FUEL',NCH,2,FNFUCST)
      CALL LCMPUT(IPTHM,'NB-TUBE',NCH,2,FNTGCST)
      CALL LCMPUT(IPTHM,'FRACT-PU',NCH,2,FRACPU)
      DEALLOCATE(FRACPU,FNTGCST,FNFUCST)
*----
*  RECOVER THE VARIATION RATIO AND SAVE IT IN A CLE-2000 VARIABLE
*----
      IF(IPICK.EQ.1) THEN
         CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
         IF(ITYP.NE.-2) CALL XABORT('THM: OUTPUT REAL EXPECTED.')
         ITYP=2
         CALL REDPUT(ITYP,NITMA,RATIOX,TEXT12,DFLOT)
         CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
         IF((ITYP.NE.3).OR.(TEXT12.NE.';')) THEN
           CALL XABORT('THM: ; CHARACTER EXPECTED.')
         ENDIF      
      ENDIF      
      RETURN
*
  470 FORMAT(/11H THM: SAVE ,A,9H AT TIME=,1P,E12.4,3H S.)
  480 FORMAT(/31H THM: RADIAL POWER FORM FACTORS/(1P,10E12.4))
  490 FORMAT(/18H THM: PARAMETER = ,A,1P,E12.4,3H ->,E12.4,7H RATIO=,
     1 E12.4)
  500 FORMAT(/27H THM: SET GLOBAL PARAMETER ,A,2H =,1P E12.4)
  510 FORMAT(/14H THM: RECOVER ,A,13H PARAMETER = ,A,1H.)
  520 FORMAT(/15H THM: ERROR ON ,A,2H =,F12.3,1X,A,13H  MIN VALUE =,
     1 F12.3,1X,A,13H  MAX VALUE =,F12.3,1X,A)
  530 FORMAT(/28H THM: PERFORM TRANSIENT STEP,I5,9H BETWEEN ,1P,E14.4,
     1 4H AND,E14.4,3H S.)
  540 FORMAT(/
     1 14H STATE VECTOR:/
     2 7H NZ    ,I9,27H   (NUMBER OF AXIAL MESHES)/
     3 7H NCH   ,I9,43H   (NUMBER OF CHANNELS IN THE RADIAL PLANE)/
     4 7H MAXIT1,I9,36H   (NUMBER OF CONDUCTION ITERATIONS)/
     5 7H MAXIT2,I9,39H   (NUMBER OF CENTER-PELLET ITERATIONS)/
     6 7H MAXIT3,I9,30H   (NUMBER OF FLOW ITERATIONS)/
     7 7H NFD   ,I9,32H   (NUMBER OF FUEL RADIAL ZONES)/
     8 7H NDTOT ,I9,36H   (NUMBER OF DISCRETISATION POINTS)/
     9 7H ITIME ,I9,21H   (CALCULATION TYPE)/
     1 7H TIMEIT,I9,30H   (TRANSIENT ITERATION INDEX)/
     2 7H IHGAP ,I9,34H   (HGAP FLAG (0=DEFAULT/1=FIXED))/
     3 7H IHCONV,I9,42H   (HCONV FLAG (0=DITTUS-BOELTER/1=FIXED))/
     4 7H ICONDF,I9,46H   (FUEL CONDUCTIVITY FLAG (0=STORA-CHENEBAULT,
     5 54H (UOX), COMETHE (MOX)/1=USER-PROVIDED FUNCTION OF FUEL,
     6 14H TEMPERATURE))/
     7 7H ICONDC,I9,39H   (CLAD CONDUCTIVITY FLAG (0=DEFAULT/1,
     8 47H=USER-PROVIDED POLYNOMIAL OF CLAD TEMPERATURE))/
     9 7H IFRCDI,I9,40H   (FUEL CONDUCTIVITY APPROXIMATION FLAG,
     1 44H (0=DEFAULT/1=AVERAGE APPROXIMATION FORCED))/
     2 7H ISUBM ,I9,47H   (BOILING MODEL FLAG (0=ONE-PHASE/1=BOWRING C,
     3 37HORRELATION/2=SAHA-ZUBER CORRELATION))/
     4 7H NPRAD ,I9,47H   (RADIAL POWER FORM FACTOR (0=FLAT/NUMBER OF ,
     5 8HPOINTS))/
     6 7H NPOWER,I9,36H   (NUMBER OF POINTS IN POWER-TABLE)/
     7 7H IFLUID,I9,32H   (TYPE OF FLUID (0=H2O/1=D2O))/
     8 7H IGAP  ,I9,39H   (GAP IS CONSIDERED (0=GAP/1=NO GAP))/
     9 7H IPRES ,I9,46H   (PRESSURE DROP (0=CONSTANT/1=NON CONSTANT))/
     1 7H IDFM  ,I9,47H   (DRIFT FLUX MODEL (0=HEM1/1=EPRI/2=MODEBSTIO,
     2 21HN/3=GERAMP/4=CHEXAL)))
  550 FORMAT(
     1 7H NCONDF,I9,43H   (DEGREE OF FUEL CONDUCTIVITY POLYNOMIAL))
  560 FORMAT(
     1 7H NCONDC,I9,43H   (DEGREE OF CLAD CONDUCTIVITY POLYNOMIAL))
  570 FORMAT(/
     1 12H REAL PARAM:,1P/
     2 7H DTIME ,E12.4,19H   (TIME STEP IN S)/
     3 7H FPUISS,E12.4,25H   (COOLANT POWER FACTOR)/
     4 7H CFLUX ,E12.4,32H   (CRITICAL HEAT FLUX IN W/M^2)/
     5 7H SPEED ,E12.4,28H   (COOLANT VELOCITY IN M/S)/
     6 7H POULET,E12.4,34H   (OUTLET COOLANT PRESSURE IN PA)/
     7 7H TINLET,E12.4,35H   (INLET COOLANT TEMPERATURE IN K)/
     8 7H POROS ,E12.4,19H   (OXYDE POROSITY)/
     9 7H RC    ,E12.4,28H   (FUEL PELLET RADIUS IN M)/
     1 7H RIG   ,E12.4,34H   (INTERNAL CLAD ROD RADIUS IN M)/
     2 7H RGG   ,E12.4,34H   (EXTERNAL CLAD ROD RADIUS IN M)/
     3 7H RTG   ,E12.4,27H   (GUIDE TUBE RADIUS IN M)/
     4 7H PITCH ,E12.4,24H   (HEXAGONAL SIDE IN M)/
     5 7H ERMAXT,E12.4,35H   (TEMPERATURE MAXIMUM ERROR IN K)/
     6 7H ERMAXC,E12.4,32H   (FLOW MAXIMUM RELATIVE ERROR)/
     7 7H RELAX ,E12.4,25H   (RELAXATION PARAMETER)/
     8 7H RTIME ,E12.4,20H   (TIME VALUE IN S)/
     9 7H WTEFF ,E12.4,44H   (SURFACE TEMPERATURE WEIGHTING FACTOR IN ,
     1 27HEFFECTIVE FUEL TEMPERATURE)/
     2 7H RATIOX,E12.4,35H   (MAXIMUM OF VARIABLE VARIATIONS)/
     3 7H EPSR  ,E12.4,34H   (RUGOSITY IN M OF THE FUEL ROD)/
     4 7H THETA ,E12.4,41H   (ANGLE IN RADIANS OF THE FUEL CHANNEL))
  580 FORMAT(7H HGAP  ,1P,E12.4,20H   (HGAP IN W/m^2/K))
  590 FORMAT(7H HCONV ,1P,E12.4,21H   (HCONV IN W/m^2/K))
  600 FORMAT(7H HCONV ,1P,E12.4,22H   (POWER FACTOR IN W))
  610 FORMAT(/37H THM: CORE COOLANT SECTION. COMPUTED=,1P,E9.2,
     1 7H GIVEN=,E9.2,4H m2.)
      END