1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
*DECK PLQUAD
SUBROUTINE PLQUAD(N0,M1,MAXM,APLUS,BPLUS,PDG,XDROIT,COUT,XOBJ,
> EPS,IMPR,IERR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Minimize a linear problem with a quadratic constraint using a
* parametric complementarity principle.
* PLQUAD = Linear Programmation with QUADratic constraint
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s):
* A. Hebert and T. Falcon
*
*Parameters: input
* N0 number of control variables.
* M1 number of constraints.
* MAXM first dimension of matrix APLUS.
* APLUS coefficient matrix for the linear constraints.
* BPLUS right hand sides corresponding to the coefficient matrix.
* PDG weights assigned to control variables in the quadratic
* constraint.
* XDROIT quadratic constraint radius squared.
* COUT costs of control variables.
* EPS tolerence used for pivoting.
* IMPR print flag.
*
*Parameters: ouput
* XOBJ control variables.
* IERR return code (=0: normal completion).
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER N0,M1,MAXM,IERR,IMPR
DOUBLE PRECISION BPLUS(M1+1),PDG(N0),XOBJ(N0),EPS,XDROIT,
> APLUS(MAXM,N0),COUT(N0)
*----
* LOCAL VARIABLES
*----
CHARACTER*4 ROW(7)
DOUBLE PRECISION PVAL,POLY0,POLY1,POLY2,XVALIR,X,OBJ,DISCRI,
> XROOT1,XROOT2,XVAL,XTAUU,XVALL,XVALC,OBJLIN
INTEGER N,NP1,NP2,NP3,I,J,K,IS,JS,IROWIS,IR,IROWR,JR,IKIT,II
DOUBLE PRECISION XTAU,XTAUL,UI,XMIN,XVALU
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IROW,ICOL
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: U,V,WRK
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: P
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IROW(M1+1),ICOL(M1+2))
ALLOCATE(U(M1+1),V(M1+1))
ALLOCATE(P(M1+1,M1+4),WRK(N0))
*
N = M1 + 1
NP1 = N + 1
NP2 = N + 2
NP3 = N + 3
*----
* STEP 2: SET-UP AND SOLVE THE PARAMETRIC COMPLEMENTARITY PROBLEM.
*----
DO I=1,N
DO J=1,N0
WRK(J) = APLUS(I,J)/PDG(J)
ENDDO
DO K=1,N
PVAL = 0.0D0
DO J=1,N0
PVAL = PVAL + WRK(J)*APLUS(K,J)
ENDDO
P(I,K) = PVAL
ENDDO
ENDDO
*
DO I=1,N
IROW(I) = I
ICOL(I) = -I
P(I,NP1) = 1.0D0
P(I,NP2) = 0.0D0
P(I,NP3) = BPLUS(I)
ENDDO
*
ICOL(NP1) = -NP1
P(N,NP2) = 1.0D0
*
CALL PLLEMK(N,NP3,EPS,IMPR,P,IROW,ICOL,IERR)
*
IF (IERR.GE.1) THEN
WRITE(6,1000) IERR
GO TO 500
ENDIF
*
XTAU = 0.0
XTAUL = 0.0
OBJLIN = BPLUS(N)
*----
* COMPUTE VECTOR T=(NU,PI)=U+XTAU*V
*----
110 POLY0 = 0.0D0
POLY1 = 0.0D0
POLY2 = 0.0D0
*
DO 120 I=1,N
IR = -IROW(I)
IF (IR.GT.0) THEN
U(IR) = P(I,NP3)
V(IR) = P(I,NP2)
POLY0 = POLY0 - P(I,NP3)*BPLUS(IR)
POLY1 = POLY1 - P(I,NP2)*BPLUS(IR)
ELSE
U(-IR) = 0.0
V(-IR) = 0.0
ENDIF
IF (IR.EQ.N) THEN
POLY1 = POLY1 - P(I,NP3)
POLY2 = (-P(I,NP2))
ENDIF
120 CONTINUE
*
IF (IMPR.GE.3) THEN
DO 121 I=1,N0
XOBJ(I) = 0.0
121 CONTINUE
*
DO 123 I=1,N
UI = U(I) + XTAUL*V(I)
IF (UI.EQ.0.0) GO TO 123
DO 122 J=1,N0
XOBJ(J) = XOBJ(J) - UI*APLUS(I,J)/PDG(J)
122 CONTINUE
123 CONTINUE
*
X = 0.0D0
OBJ = 0.0D0
DO 126 J=1,N0
X = X + PDG(J)*XOBJ(J)*XOBJ(J)
OBJ = OBJ + XOBJ(J)*COUT(J)
126 CONTINUE
WRITE(6,2000) OBJ,POLY0,X,POLY1,XTAUL,POLY2,(XOBJ(J),J=1,N0)
ENDIF
IF ((XTAU.EQ.0.0).AND.(POLY0.LE.XDROIT)) GO TO 230
*----
* STEP 3
*----
DO 130 I=1,N
IF(P(I,NP2).LT.-EPS) GO TO 140
130 CONTINUE
GO TO 215
*----
* STEP 4
*----
140 XTAUU = 1.0E+25
*
IR = 0
DO 150 K=I,N
IF(P(K,NP2).GE.-EPS) GO TO 150
XVAL = -P(K,NP3)/P(K,NP2)
IF(XVAL.GT.XTAUU) GO TO 150
XTAUU = XVAL
IR = K
150 CONTINUE
*
XVALU = (POLY2*XTAUU + POLY1)*XTAUU + POLY0
*----
* STEP 5
*----
IF(XVALU.LE.XDROIT) GO TO 215
IROWR = IABS(IROW(IR))
JR=0
DO 160 K=1,NP1
IF(IABS(ICOL(K)).EQ.IROWR) THEN
JR=K
GO TO 170
ENDIF
160 CONTINUE
IERR = 5
GO TO 500
*
170 XTAUL = XTAUU
XVALL = XVALU
IF(P(IR,JR).LE.EPS) GO TO 180
CALL PLPIVT(N,NP3,IR,JR,P,IROW,ICOL)
GO TO 110
*
180 XMIN=1.0E+25
*
XVALIR = P(IR,NP3)/P(IR,NP2)
*
DO 190 I=1,N
IF(P(I,JR).GE.-EPS) GO TO 190
XVAL = -1.0D0/P(I,JR)*(P(I,NP3) - P(I,NP2)*XVALIR)
IF(XVAL.GE.XMIN) GO TO 190
XMIN = XVAL
IS = I
190 CONTINUE
*
IF (XMIN.EQ.1.0E+25) THEN
IERR = 6
GO TO 500
ENDIF
*
IROWIS=IABS(IROW(IS))
DO 200 JS=1,N
IF(IABS(ICOL(JS)).EQ.IROWIS) GO TO 210
200 CONTINUE
*
210 CALL PLPIVT(N,NP3,IR,JS,P,IROW,ICOL)
CALL PLPIVT(N,NP3,IS,JR,P,IROW,ICOL)
GO TO 110
*----
* STEP 6
*----
215 IKIT = 0
*
216 XTAU = (XTAUL + XTAUU)/2.0
IKIT = IKIT + 1
IF (IKIT.GT.50) GOTO 217
XVALC = ((POLY2*XTAU + POLY1)*XTAU + POLY0)/XDROIT
IF (IMPR.GE.3) THEN
WRITE(6,5000) XTAUL,XTAUU,XTAU,POLY0,POLY1,POLY2,XDROIT,XVALC
ENDIF
IF (XVALC.GT.1.0) GO TO 220
IF (XVALC.GE.0.99999) GO TO 230
XTAUU = XTAU
GO TO 216
220 XTAUL = XTAU
GO TO 216
*----
* STEP 6
*----
217 XTAU = (XTAUL + XTAUU)/2.0
XVALC = ((POLY2*XTAU + POLY1)*XTAU + POLY0)/XDROIT
IF (IMPR.GE.3) THEN
WRITE(6,5000) XTAUL,XTAUU,XTAU,POLY0,POLY1,POLY2,XDROIT,XVALC
ENDIF
*
IF (POLY0.EQ.0.0) THEN
IF (POLY1.EQ.0.0) THEN
IF (POLY2.EQ.0.0) THEN
WRITE(6,6000) POLY0,POLY1,POLY2,XDROIT
IERR = 7
GO TO 500
ELSE
IF (POLY2.LT.0.0) THEN
WRITE(6,6000) POLY0,POLY1,POLY2,XDROIT
IERR = 7
GO TO 500
ENDIF
XTAU = SQRT(XDROIT/POLY2)
ENDIF
ELSE IF (POLY2.EQ.0.0) THEN
XTAU = XDROIT/POLY1
ELSE
DISCRI = POLY1*POLY1 + 4.*POLY2*XDROIT
IF (DISCRI.LT.0.0) THEN
WRITE(6,6000) POLY0,POLY1,POLY2,XDROIT
IERR = 7
GO TO 500
ENDIF
XROOT1 = -POLY1 + SQRT(DISCRI)
XROOT2 = -POLY1 - SQRT(DISCRI)
XTAU = MAX(XROOT1,XROOT2)
IF (XTAU.LE.0.0) THEN
WRITE(6,6000) POLY0,POLY1,POLY2,XDROIT
IERR = 7
GO TO 500
ENDIF
XTAU = XTAU/(2.*POLY2)
ENDIF
ELSE IF (POLY1.EQ.0.0) THEN
IF (POLY2.EQ.0.0) THEN
IF ((POLY0.LT.(XDROIT-EPS)).OR.(POLY0.GT.XDROIT+EPS)) THEN
WRITE(6,6000) POLY0,POLY1,POLY2,XDROIT
IERR = 7
GO TO 500
ENDIF
ELSE
DISCRI = XDROIT-POLY0
IF (DISCRI.LT.0.0) THEN
WRITE(6,6000) POLY0,POLY1,POLY2,XDROIT
IERR = 7
GO TO 500
ENDIF
XTAU = SQRT(DISCRI/POLY2)
ENDIF
ELSE IF (POLY2.EQ.0.0) THEN
XTAU = (XDROIT-POLY0)/POLY1
ELSE
DISCRI = POLY1*POLY1 - 4.*POLY2*(POLY0-XDROIT)
IF (DISCRI.LT.0.0) THEN
WRITE(6,6000) POLY0,POLY1,POLY2,XDROIT
IERR = 7
GO TO 500
ENDIF
XROOT1 = -POLY1 + SQRT(DISCRI)
XROOT2 = -POLY1 - SQRT(DISCRI)
XTAU = MAX(XROOT1,XROOT2)
IF (XTAU.LE.0.0) THEN
WRITE(6,6000) POLY0,POLY1,POLY2,XDROIT
IERR = 7
GO TO 500
ENDIF
XTAU = XTAU/(2.*POLY2)
ENDIF
*
IF (IMPR.GE.3) THEN
WRITE(6,5000) XTAUL,XTAUU,XTAU,POLY0,POLY1,POLY2,XDROIT,XVALC
ENDIF
*
IF (ABS(XTAU).GT.XTAUU) THEN
XTAU = XTAUU
ENDIF
*----
* END OF THE ALGORITHM. COMPUTE THE CONTROL VARIABLES.
*----
230 XVALC=(POLY2*XTAU+POLY1)*XTAU+POLY0
*
IF ((IMPR.GE.3).AND.(XVALC.NE.1.0)) THEN
WRITE(6,5000) XTAUL,XTAUU,XTAU,POLY0,POLY1,POLY2,XDROIT,XVALC
ENDIF
*
IF (IMPR.GE.2) THEN
WRITE(6,3000) XTAU,XVALC
DO 255 I=1,N,7
II = MIN0(I+6,N)
DO 250 J=I,II
IF (IROW(J).LT.0) THEN
WRITE (ROW(J-I+1),'(1HX,I3.3)') (-IROW(J))
ELSE
WRITE (ROW(J-I+1),'(1HY,I3.3)') IROW(J)
ENDIF
*
250 CONTINUE
WRITE(6,4000) (ROW(J-I+1),P(J,NP3)+XTAU*P(J,NP2),J=I,II)
255 CONTINUE
ENDIF
IERR = 0
*
XOBJ(:N0)=0.0D0
DO 280 I=1,N
UI = U(I) + XTAU*V(I)
IF (UI.EQ.0.0) GO TO 280
DO 270 J=1,N0
XOBJ(J) = XOBJ(J) - UI*APLUS(I,J)/PDG(J)
270 CONTINUE
280 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
500 DEALLOCATE(WRK,P)
DEALLOCATE(V,U)
DEALLOCATE(ICOL,IROW)
RETURN
*
1000 FORMAT(//,5X,'PLQUAD: FAILURE OF THE PARAMETRIC LINEAR COMPLEME',
> 'NTARITY SOLUTION (IERR=',I5,').')
2000 FORMAT(//,5X,'SOLUTION AFTER PIVOTING : ',
> /,5X,'OBJECTIVE FUNCTION = ',1P,E12.5,
> /,5X,'POLY0 = ',1P,E12.5,
> /,5X,'QUADRATIC CONSTRAINT = ',1P,E12.5,
> /,5X,'POLY1 = ',1P,E12.5,
> /,5X,'XTAU PARAMETER = ',1P,E12.5,
> /,5X,'POLY2 = ',1P,E12.5,
> /,5X,'CONTROL VARIABLES = ',/,(5X,1P,10E12.4))
3000 FORMAT(//,5X,'SOLUTION OF THE PARAMETRIC LINEAR COMPLEMENTARITY',
> ' PROBLEM :','*** X: KUHN-TUCKER MULTIPLIERS ;',
> 5X,'*** Y: SLACK VARIABLES ',/,
> /,5X,'TAU = ',1P,E12.5,
> /,5X,'QUADRATIC CONSTRAINT = ',1P,E12.5,/)
4000 FORMAT(7(1X,A4,'=',E12.5),/)
5000 FORMAT( 8X,'XTAUL',7X,'XTAUU',7X,'XTAU ',7X,
> 'POLY0',7X,'POLY1',7X,'POLY2',7X,
> 'XDROIT',6X,'XVALC',/,
> 5X,1P,8E12.5)
6000 FORMAT( 8X,'POLY0',7X,'POLY1',7X,'POLY2',7X,
> 'XDROIT'/5X,1P,4E12.5)
END
|