1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
|
*DECK PLQ
SUBROUTINE PLQ(NENTRY,HENTRY,IENTRY,JENTRY,KENTRY)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solves a linear optimization problem with a quadratic constraint.
* PLQ = Quasi Linear Programmation (aka Optex method)
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s):
* R. Chambon
*
*Parameters: input
* NENTRY number of data structures transfered to this module.
* HENTRY name of the data structures.
* IENTRY data structure type where:
* IENTRY=1 for LCM memory object;
* IENTRY=2 for XSM file;
* IENTRY=3 for sequential binary file;
* IENTRY=4 for sequential ASCII file.
* JENTRY access permission for the data structure where:
* JENTRY=0 for a data structure in creation mode;
* JENTRY=1 for a data structure in modifications mode;
* JENTRY=2 for a data structure in read-only mode.
* KENTRY data structure pointer.
*
*Comments:
* The calling specifications are:
* OPTIM := PLQ: OPTIM :: (plq\_data) ;
* where
* OPTIM : name of the \emph{optimize} object (L\_OPTIMIZE signature)
* containing the optimization informations. Object OPTIM must appear on
* both LHS and RHS to be able to update the previous values.
* (plq\_data) : structure containing the data to the module PLQ:.
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NENTRY,IENTRY(NENTRY),JENTRY(NENTRY)
TYPE(C_PTR) KENTRY(NENTRY)
CHARACTER HENTRY(NENTRY)*12
*----
* LOCAL VARIABLES
*----
INTEGER NSTATE
PARAMETER (NSTATE=40)
INTEGER NITMA,ITYP,ITYP1,ICONV,ICST,IEDSTP,LENGT1,LENGT2,ITYLCM,
1 ISTEP,IVAR
REAL FLOTT,ECOSTR
CHARACTER TEXT12*12,HSIGN*12,TEXT16*16
INTEGER OPTPRI(NSTATE)
DOUBLE PRECISION OPTPRR(NSTATE)
TYPE(C_PTR) IPOPT
INTEGER I,NVAR,NCST,LENGT,IPRINT,NSTPEX,IMTHD,M0,MINMAX,CNVTST,
1 IERR
DOUBLE PRECISION DFLOTT,XDROIT,XS,XXS,EPS1,EPS4,EPSIM,ECOST,
1 DELTA,SR,NORM,EPSEXT,COST,CQUAD,OBJNEW,OBJOLD,
2 DERR,NORX,ERRX,DDX
LOGICAL LSAVE,LNORM2,LWAR,LBACK
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: INEGAL
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: VARVAL,VARWGT,
> FCSTV,GRAD,ODX,ODF,DX,CONTR,VALMAX,VALMIN,DINF,DSUP,VARVL2,
> GRAD0,VARV0,WEIGH,DERIV0,CSTV0
*----
* CHECK THE VALIDITY OF OBJECTS
*----
IF(NENTRY.NE.1) CALL XABORT('PLQ:ONE OBJECT EXPECTED.')
IF(JENTRY(1).NE.1) CALL XABORT('PLQ: OBJECT IN MODIFICATION '
1 //'MODE ONLY')
IPOPT=KENTRY(1)
IF((IENTRY(1).NE.1).AND.(IENTRY(1).NE.2))CALL XABORT('PLQ:'
1 //' LCM OBJECT EXPECTED')
CALL LCMGTC(KENTRY(1),'SIGNATURE',12,HSIGN)
IF(HSIGN.NE.'L_OPTIMIZE') THEN
TEXT12=HENTRY(1)
CALL XABORT('PLQ: SIGNATURE OF '//TEXT12//' IS '//HSIGN//
1 '. L_OPTIMIZE EXPECTED.')
ENDIF
*----
* RECOVER STATE VECTOR INFORMATION
*----
CALL LCMGET(IPOPT,'STATE-VECTOR',OPTPRI)
NVAR =OPTPRI(1)
NCST =OPTPRI(2)
MINMAX=OPTPRI(3)
ICONV =OPTPRI(4)
IF((MINMAX.NE.1).AND.(MINMAX.NE.-1)) CALL XABORT('PLQ: '
1 //'MINMAX not equal to 1 or -1')
NSTPEX=OPTPRI(5)+1
IEDSTP=OPTPRI(6)
IMTHD =OPTPRI(9)
ISTEP= OPTPRI(10)
CALL LCMGET(IPOPT,'OPT-PARAM-R',OPTPRR)
SR =OPTPRR(1)
EPS1 =OPTPRR(2)
EPSEXT=OPTPRR(3)
EPSIM =OPTPRR(4)
EPS4 =OPTPRR(5)
ECOST =OPTPRR(6)
*----
* SET CONTROL-VARIABLE VALUES
*----
ALLOCATE(VARVAL(NVAR))
CALL LCMLEN(IPOPT,'VAR-VALUE',LENGT,ITYP)
IF(LENGT.NE.NVAR) CALL XABORT('PLQ: WRONG NUMBER OF VARIABLE')
*----
* SET CONTROL-VARIABLE WEIGHTS
*----
ALLOCATE(VARWGT(NVAR))
CALL LCMLEN(IPOPT,'VAR-WEIGHT',LENGT,ITYP)
IF(LENGT.EQ.0) THEN
VARWGT(:NVAR)=1.0D0
ELSE IF(LENGT.EQ.NVAR) THEN
CALL LCMGET(IPOPT,'VAR-WEIGHT',VARWGT)
ELSE
CALL XABORT('PQL: NVAR - LENGT ARE NOT THE SAME')
ENDIF
*----
* MEMORY ALLOCATION
*----
ALLOCATE(FCSTV(NCST+1),GRAD(NVAR*(NCST+1)),ODX(NVAR),ODF(NVAR))
*----
* SET SYSTEM CHARACTERISTICS (THE OBJECTIVE FUNCTION IS THE FIRST ONE)
*----
CALL LCMLEN(IPOPT,'FOBJ-CST-VAL',LENGT,ITYP)
IF(LENGT.EQ.0) CALL XABORT('PLQ: OBJECTIVE FUNCTION AND CONSTRA'
1 //'INTS NOT YET EVALUATED')
CALL LCMGET(IPOPT,'FOBJ-CST-VAL',FCSTV)
COST=FCSTV(1)
*----
* READ USER INPUT:
*----
IPRINT=0
LWAR=.FALSE.
20 CALL REDGET(ITYP,NITMA,FLOTT,TEXT12,DFLOTT)
* Edition level
30 IF(ITYP.NE.3) CALL XABORT('PLQ: CHARACTER DATA EXPECTED(1)')
IF(TEXT12.EQ.'EDIT') THEN
CALL REDGET(ITYP,IPRINT,FLOTT,TEXT12,DFLOTT)
IF(ITYP.NE.1) CALL XABORT('PLQ: *IPRINT* MUST BE INTEGER')
ELSE IF(TEXT12.EQ.'MINIMIZE') THEN
MINMAX=1
ELSE IF(TEXT12.EQ.'MAXIMIZE') THEN
MINMAX=-1
ELSE IF(TEXT12.EQ.'METHOD') THEN
CALL REDGET(ITYP,NITMA,FLOTT,TEXT12,DFLOTT)
IF(ITYP.NE.3) CALL XABORT('PLQ: CHARACTER DATA EXPECTED(2)')
IF(TEXT12.EQ.'SIMPLEX') THEN
IMTHD=1
ELSE IF(TEXT12.EQ.'LEMKE') THEN
IMTHD=2
ELSE IF(TEXT12.EQ.'MAP') THEN
IMTHD=3
ELSE IF(TEXT12.EQ.'AUG-LAGRANG') THEN
IMTHD=4
ELSE IF(TEXT12.EQ.'PENAL-METH') THEN
IMTHD=5
ELSE
CALL XABORT('PLQ: WRONG METHOD KEYWORD')
ENDIF
ELSE IF(TEXT12.EQ.'OUT-STEP-LIM') THEN
CALL REDGET(ITYP,NITMA,FLOTT,TEXT12,DFLOTT)
IF(ITYP.EQ.2) THEN
SR=FLOTT
ELSE IF(ITYP.EQ.4) THEN
SR=DFLOTT
ELSE
CALL XABORT('PLQ: REAL OR DOUBLE PRECISION VALUE EXPECTED.')
ENDIF
ELSE IF(TEXT12.EQ.'INN-STEP-EPS') THEN
* Set the tolerence used for inner linear LEMKE or SIMPLEX
* calculation.
CALL REDGET(ITYP,NITMA,FLOTT,TEXT12,DFLOTT)
IF(ITYP.EQ.2) THEN
EPSIM=FLOTT
ELSE IF(ITYP.EQ.4) THEN
EPSIM=DFLOTT
ELSE
CALL XABORT('PLQ: REAL OR DOUBLE PRECISION VALUE EXPECTED.')
ENDIF
ELSE IF(TEXT12.EQ.'OUT-STEP-EPS') THEN
* Set the tolerence used for external iterations.
CALL REDGET(ITYP,NITMA,FLOTT,TEXT12,DFLOTT)
IF(ITYP.EQ.2) THEN
EPSEXT=FLOTT
ELSE IF(ITYP.EQ.4) THEN
EPSEXT=DFLOTT
ELSE
CALL XABORT('PLQ: REAL OR DOUBLE PRECISION VALUE EXPECTED.')
ENDIF
ELSE IF(TEXT12.EQ.'CST-QUAD-EPS') THEN
CALL REDGET(ITYP,NITMA,FLOTT,TEXT12,DFLOTT)
IF(ITYP.NE.2) CALL XABORT('PLQ: REAL DATA EXPECTED.')
EPS4=FLOTT
ELSE IF(TEXT12.EQ.'STEP-REDUCT') THEN
CALL REDGET(ITYP,NITMA,FLOTT,TEXT12,DFLOTT)
IF(ITYP.NE.3) CALL XABORT('PLQ: CHARACTER DATA EXPECTED(3).')
IF(TEXT12.EQ.'HALF') THEN
IEDSTP=1
ELSE IF(TEXT12.EQ.'PARABOLIC') THEN
IEDSTP=2
ELSE
CALL XABORT('PLQ: WRONG STEP REDUCTION KEYWORD.')
ENDIF
ELSE IF(TEXT12.EQ.'WARNING-ONLY')THEN
* Warning Only for failure of recovery of a valid point
LWAR=.TRUE.
ELSE IF(TEXT12.EQ.'CALCUL-DX')THEN
* Calculation of next point
GO TO 100
ELSE IF(TEXT12.EQ.'COST-EXTRAP')THEN
* Cost extrapolation
GO TO 200
ELSE IF(TEXT12.EQ.'OUT-CONV-TST') THEN
* Convergence test
GO TO 300
ELSE IF( TEXT12.EQ.';' )THEN
* End of this subroutine
GO TO 1000
ELSE
CALL XABORT('PLQ: '//TEXT12//' IS AN INVALID KEYWORD.')
ENDIF
GO TO 20
*----
* TEST FOR IMPROVEMENT FOR THE OBJECTIVE FUNCTION
*----
100 LBACK=.FALSE.
CALL LCMLEN(IPOPT,'OLD-VALUE',LENGT,ITYP)
IF((JENTRY(1).EQ.1).AND.(LENGT.NE.0)) THEN
ALLOCATE(CSTV0(NCST+1))
OBJNEW=FCSTV(1)
CALL LCMSIX(IPOPT,'OLD-VALUE',1)
CALL LCMLEN(IPOPT,'FOBJ-CST-VAL',LENGT1,ITYP)
CALL LCMLEN(IPOPT,'VAR-VALUE',LENGT2,ITYP)
IF(LENGT1.EQ.0) THEN
CALL XABORT('PLQ: MISSING OLD OBJECTIVE FUNCTION VALUE')
ELSE IF(LENGT1.NE.NCST+1) THEN
CALL XABORT('PLQ: WRONG NUMBER OF CONSTRAINTS')
ELSE IF(LENGT2.EQ.0) THEN
CALL XABORT('PLQ: MISSING CONTROL VARIABLES RECORD')
ELSE IF(LENGT2.NE.NVAR) THEN
CALL XABORT('PLQ: WRONG NUMBER OF CONTROL VARIABLES')
ENDIF
CALL LCMGET(IPOPT,'FOBJ-CST-VAL',CSTV0)
OBJOLD=CSTV0(1)
IF(OBJNEW.GE.OBJOLD) THEN
LBACK=.TRUE.
IF(IPRINT.GT.1) WRITE(6,4005) OBJOLD,OBJNEW
ENDIF
DEALLOCATE(CSTV0)
CALL LCMSIX(IPOPT,' ',2)
ENDIF
*----
* RECOVER OBJECTIVE FUNCTION AND GRADIENTS FROM PRECEDING ITERATION
*----
IF(LBACK) THEN
ISTEP=0
CALL LCMGET(IPOPT,'VAR-VALUE',VARVAL)
IF(IPRINT.GT.1) THEN
WRITE(6,4001) 'REJECTED CONTROL VARIABLES:',
1 (VARVAL(IVAR),IVAR=1,NVAR)
ENDIF
CALL LCMSIX(IPOPT,'OLD-VALUE',1)
ALLOCATE(CSTV0(NCST+1),VARV0(NVAR),DERIV0(NVAR*(NCST+1)),
1 WEIGH(NVAR))
CALL LCMGET(IPOPT,'FOBJ-CST-VAL',CSTV0)
CALL LCMGET(IPOPT,'VAR-VALUE',VARV0)
CALL LCMGET(IPOPT,'GRADIENT',DERIV0)
CALL LCMSIX(IPOPT,' ',2)
CALL LCMPUT(IPOPT,'FOBJ-CST-VAL',NCST+1,4,CSTV0)
CALL LCMPUT(IPOPT,'VAR-VALUE',NVAR,4,VARV0)
CALL LCMPUT(IPOPT,'GRADIENT',NVAR*(NCST+1),4,DERIV0)
IF(IEDSTP.LE.1) THEN
SR=SR*0.5
ELSE IF(IEDSTP.EQ.2) THEN
CALL LCMLEN(IPOPT,'VAR-WEIGHT',LENGT,ITYLCM)
IF(LENGT.EQ.NVAR) THEN
CALL LCMGET(IPOPT,'VAR-WEIGHT',WEIGH)
ELSE
WEIGH(:NVAR)=1.0D0
ENDIF
NORX=0.0D0
DERR=0.0D0
DO 110 I=1,NVAR
DDX=VARVAL(I)-VARV0(I)
NORX=NORX+WEIGH(I)*DDX**2
DERR=DERR+SQRT(WEIGH(I))*DDX*DERIV0(I)
110 CONTINUE
NORX=NORX**0.5
DERR=DERR/NORX
ERRX=ABS(0.5*DERR*NORX*NORX/(DERR*NORX-(OBJNEW-OBJOLD)))
SR=MAX(MIN(SR,ERRX),SR/20.0)
DEALLOCATE(WEIGH)
ENDIF
IF(IPRINT.GT.1) WRITE(6,'(/31H PLQ: REDUCES QUADRATIC CONSTRA,
1 13HINT RADIUS TO,1P,E11.4,8H IEDSTP=,I4)') SR,IEDSTP
IF(SR.LE.EPS4) THEN
WRITE(6,4006)
ICONV=1
ENDIF
DEALLOCATE(DERIV0,VARV0,CSTV0)
*----
* USES NEW GRADIENTS FROM MODULE GRAD:
*----
ELSE
* count the number of iterations without step back
ISTEP=ISTEP+1
IF(ISTEP.GT.10) THEN
SR=2.0*SR
ISTEP=5
IF(IPRINT.GT.1) WRITE(6,'(/29H PLQ: INCREASES QUADRATIC CON,
1 17HSTRAINT RADIUS TO,1P,E11.4)') SR
ENDIF
CALL LCMGET(IPOPT,'VAR-VALUE',VARVAL)
CALL LCMSIX(IPOPT,'OLD-VALUE',1)
CALL LCMPUT(IPOPT,'VAR-VALUE2',NVAR,4,VARVAL)
CALL LCMSIX(IPOPT,' ',2)
ENDIF
*----
* SET GRADIENTS
*----
CALL LCMGET(IPOPT,'GRADIENT',GRAD)
*----
* PRINT INFORMATION
*----
IF(IPRINT.GT.0) THEN
WRITE(6,'(/47H PLQ: INFORMATION AT QUADRATIC CONSTRAINT ITERA,
1 4HTION,I5)') NSTPEX
WRITE(6,3999) NSTPEX,FCSTV(1)
WRITE(6,4000) 'QUADRATIC CONSTRAINT RADIUS:',SR
IF(NCST.GT.0) WRITE(6,4001) 'CONSTRAINTS:',(FCSTV(ICST),
1 ICST=2,NCST+1)
CALL LCMLEN(IPOPT,'VAR-VALUE',LENGT1,ITYLCM)
IF(LENGT1.GT.0) THEN
CALL LCMGET(IPOPT,'VAR-VALUE',VARVAL)
WRITE(6,4001) 'CONTROL VARIABLES:',(VARVAL(IVAR),IVAR=1,NVAR)
ENDIF
IF(IPRINT.GT.1) THEN
ALLOCATE(DERIV0(NVAR*(NCST+1)))
CALL LCMGET(IPOPT,'GRADIENT',DERIV0)
WRITE(6,'(/29H GRADIENTS-------------------)')
WRITE(6,4001) 'OBJECTIVE FUNCTION:',(DERIV0(IVAR),IVAR=1,NVAR)
IF(IPRINT.GT.2) THEN
DO 120 ICST=1,NCST
WRITE(TEXT16,'(10HCONSTRAINT,I4,1H:)') ICST
WRITE(6,4001) TEXT16,(DERIV0(ICST*NVAR+IVAR),IVAR=1,NVAR)
120 CONTINUE
ENDIF
DEALLOCATE(DERIV0)
ENDIF
IF(LBACK) WRITE(6,'(28H *** STEP BACK ITERATION ***)')
ENDIF
*----
* NEXT STEP CALCULATION
*----
CALL LCMGET(IPOPT,'VAR-VALUE',VARVAL)
CALL REDGET(ITYP,NITMA,FLOTT,TEXT12,DFLOTT)
IF(TEXT12.EQ.'NO-STORE-OLD') THEN
LSAVE=.TRUE.
CALL REDGET(ITYP,NITMA,FLOTT,TEXT12,DFLOTT)
ELSE
LSAVE=.FALSE.
ENDIF
ITYP1=ITYP
ALLOCATE(DX(NVAR))
IF(NCST.GT.0) THEN
* INEQUAL
ALLOCATE(INEGAL(NCST))
CALL LCMLEN(IPOPT,'CST-TYPE',LENGT,ITYP)
IF(LENGT.NE.NCST) CALL XABORT('PLQ: NCST - LENGT NOT EQUAL')
CALL LCMGET(IPOPT,'CST-TYPE',INEGAL)
*
* CONTR
ALLOCATE(CONTR(NCST))
CALL LCMLEN(IPOPT,'CST-OBJ',LENGT,ITYP)
IF(LENGT.NE.NCST) CALL XABORT('PLQ: NCST - LENGT NOT EQUAL')
CALL LCMGET(IPOPT,'CST-OBJ',CONTR)
DO 130 I=1,NCST
CONTR(I) = CONTR(I)-FCSTV(I+1)
130 CONTINUE
ENDIF
*
* DINF AND DSUP
CALL LCMLEN(IPOPT,'VAR-VAL-MAX',LENGT,ITYP)
IF(LENGT.EQ.0) CALL XABORT('PLQ: NO MAXIMUM VALUE DEFINED')
ALLOCATE(VALMAX(NVAR),VALMIN(NVAR))
CALL LCMGET(IPOPT,'VAR-VAL-MAX',VALMAX)
CALL LCMLEN(IPOPT,'VAR-VAL-MIN',LENGT,ITYP)
IF(LENGT.EQ.0) CALL XABORT('PLQ: NO MAXIMUM VALUE DEFINED')
CALL LCMGET(IPOPT,'VAR-VAL-MIN',VALMIN)
ALLOCATE(DINF(NVAR),DSUP(NVAR))
DO 140 I=1,NVAR
DINF(I) = VALMIN(I) - VARVAL(I)
DSUP(I) = VALMAX(I) - VARVAL(I)
140 CONTINUE
DEALLOCATE(VALMAX,VALMIN)
*
M0 = NCST
XDROIT = SR**2
IF(IPRINT.GE.1) WRITE(6,4002) XDROIT,(VARWGT(I),I=1,NVAR)
*----
* FIND ACTIVE CONSTRAINTS FOR XK(I) LIMITS
*----
DO 150 I=1,NVAR
XS = SQRT(XDROIT/VARWGT(I))
XXS=-XS
IF(DINF(I).GT.XXS) THEN
M0 = M0 + 1
ENDIF
IF(DSUP(I).LT.XS) THEN
M0 = M0 + 1
ENDIF
150 CONTINUE
*----
* SOLUTION OF A LINEAR OPTIMIZATION PROBLEM WITH A QUADRATIC CONSTRAINT
*----
IERR=0
CALL PLDRV(IPOPT,NVAR,NCST,M0,MINMAX,IMTHD,COST,DX,VARWGT,GRAD,
> INEGAL,CONTR,DINF,DSUP,XDROIT,EPSIM,IPRINT,IERR)
*----
* STEP-BACK IN CASE OF FAILURE
*----
IF(IERR.GE.1) THEN
OPTPRI(14)=OPTPRI(14)+1
CALL LCMSIX(IPOPT,'OLD-VALUE',1)
CALL LCMLEN(IPOPT,'VAR-VALUE2',LENGT,ITYP)
IF(LENGT.EQ.0) THEN
IF(LWAR) THEN
WRITE(6,*) 'WARNING: UNABLE TO RECOVER A VALID POINT'
1 //' WITH SUCCESSFUL "PLQ" RESOLUTION'
ELSE
CALL LCMLIB(IPOPT)
CALL XABORT('PLQ: UNABLE TO RECOVER A VALID POINT WITH '
1 //'SUCCESSFUL "PLQ" RESOLUTION')
ENDIF
ELSE
ALLOCATE(VARVL2(NVAR))
CALL LCMGET(IPOPT,'VAR-VALUE2',VARVL2)
DO 160 I=1,NVAR
DX(I)=(VARVL2(I)-VARVAL(I))/2.0
160 CONTINUE
DEALLOCATE(VARVL2)
ENDIF
CALL LCMSIX(IPOPT,' ',2)
IF(IPRINT.GE.1) WRITE(6,*) 'IERR>0'
IF(IPRINT.GE.1) WRITE(6,*) 'DX=',(DX(I),I=1,NVAR)
ELSE
OPTPRI(14)=0
ENDIF
*
DO 170 I=1,NVAR
ODX(I)=DX(I)
ODF(I)=GRAD(I)
170 CONTINUE
DEALLOCATE(DX)
IF(NCST.GT.0) DEALLOCATE(INEGAL)
DEALLOCATE(DINF,DSUP)
IF(NCST.GT.0) DEALLOCATE(CONTR)
*----
* BACKUP VALUES OF THE PRECEDING ITERATION
*----
IF(.NOT.LSAVE) THEN
CALL LCMSIX(IPOPT,'OLD-VALUE',1)
CALL LCMPUT(IPOPT,'VAR-VALUE',NVAR,4,VARVAL)
CALL LCMPUT(IPOPT,'FOBJ-CST-VAL',NCST+1,4,FCSTV)
CALL LCMPUT(IPOPT,'GRADIENT',NVAR*(NCST+1),4,GRAD)
CALL LCMSIX(IPOPT,' ',2)
ENDIF
*----
* BACKUP VALUES OF THE NEW ITERATION
*----
DO 180 I=1,NVAR
VARVAL(I)=VARVAL(I)+ODX(I)
180 CONTINUE
CALL LCMPUT(IPOPT,'VAR-VALUE',NVAR,4,VARVAL)
ITYP=ITYP1
*----
* EXTRAPOLATE OBJECTIVE FUNCTION
*----
ECOST=COST
DO 190 I=1,NVAR
ECOST=ECOST+ODX(I)*ODF(I)
190 CONTINUE
*----
* REINITIALIZE GRADIENTS FOR THE NEXT ITERATION
*----
ALLOCATE(GRAD0(NVAR*(NCST+1)))
GRAD0(:NVAR*(NCST+1))=0.0D0
CALL LCMPUT(IPOPT,'GRADIENT',NVAR*(NCST+1),4,GRAD0)
DEALLOCATE(GRAD0)
GO TO 30
*----
* OUTPUT THE EXTRAPOLATED OBJECTIVE FUNCTION
*----
200 ECOSTR=REAL(ECOST)
CALL REDGET(ITYP,NITMA,ECOSTR,TEXT12,DFLOTT)
IF(ITYP.NE.-2) CALL XABORT('PLQ: OUTPUT REAL EXPECTED')
ITYP=2
CALL REDPUT(ITYP,NITMA,ECOSTR,TEXT12,DFLOTT)
GO TO 20
*----
* TEST CONVERGENCE
*----
300 LNORM2=.TRUE.
CALL REDGET(ITYP,CNVTST,FLOTT,TEXT12,DFLOTT)
IF((ITYP.EQ.3).AND.(TEXT12.EQ.'NORM-INF')) THEN
LNORM2=.FALSE.
CALL REDGET(ITYP,CNVTST,FLOTT,TEXT12,DFLOTT)
ENDIF
IF(ITYP.NE.-5) CALL XABORT('PLQ: OUTPUT LOGICAL EXPECTED')
DELTA=ABS((ECOST-COST)/COST)
NORM=0.0
CQUAD=0.0
IF(LNORM2) THEN
DO 350 I=1,NVAR
NORM=NORM+VARWGT(I)*VARVAL(I)*VARVAL(I)
CQUAD=CQUAD+VARWGT(I)*ODX(I)*ODX(I)
350 CONTINUE
IF(NORM.NE.0.0) THEN
CQUAD=SQRT(CQUAD/NORM)
ELSE
CQUAD=0.0
ENDIF
ELSE
DO 360 I=1,NVAR
NORM=MAX(NORM,ABS(VARWGT(I)**0.5*VARVAL(I)))
CQUAD=MAX(CQUAD,ABS(VARWGT(I)**0.5*ODX(I)))
360 CONTINUE
IF(NORM.NE.0.0) THEN
CQUAD=CQUAD/NORM
ELSE
CQUAD=0.0
ENDIF
ENDIF
IF(EPSEXT.EQ.0.0) EPSEXT = 0.001D0
IF(((DELTA.LT.EPSEXT).AND.(CQUAD.LE.EPSEXT)) .OR.
1 (CQUAD.LE.(EPSEXT/10.0))) THEN
CNVTST=1
ICONV =1
ELSE
CNVTST=-1
ICONV =0
ENDIF
IF(IPRINT.GE.1) THEN
WRITE(6,*) 'It= convergence?', DELTA,CQUAD,EPSEXT
IF(IPRINT.GT.2) THEN
WRITE(6,*) 'DX',(ODX(I),I=1,NVAR)
WRITE(6,*) 'X',(VARVAL(I),I=1,NVAR)
ENDIF
ENDIF
ITYP=5
CALL REDPUT(ITYP,CNVTST,FLOTT,TEXT12,DFLOTT)
GO TO 20
*----
* END
*----
1000 DEALLOCATE(VARWGT,FCSTV,GRAD,ODX,ODF,VARVAL)
*----
* SAVE THE STATE VECTORS
*----
OPTPRI(:NSTATE)=0
OPTPRI(1)=NVAR
OPTPRI(2)=NCST
OPTPRI(3)=MINMAX
OPTPRI(4)=ICONV
OPTPRI(5)=NSTPEX
OPTPRI(6)=IEDSTP
OPTPRI(7)=0
OPTPRI(8)=1
OPTPRI(9)=IMTHD
OPTPRI(10)=ISTEP
IF(IPRINT.GT.0) WRITE(6,4003) (OPTPRI(I),I=1,10)
CALL LCMPUT(IPOPT,'STATE-VECTOR',NSTATE,1,OPTPRI)
OPTPRR(:NSTATE)=0.0D0
OPTPRR(1)=SR
OPTPRR(2)=EPS1
OPTPRR(3)=EPSEXT
OPTPRR(4)=EPSIM
OPTPRR(5)=EPS4
OPTPRR(6)=ECOST
IF(IPRINT.GT.0) WRITE(6,4004) (OPTPRR(I),I=1,6)
CALL LCMPUT(IPOPT,'OPT-PARAM-R',NSTATE,4,OPTPRR)
IF(IPRINT.GT.1) CALL LCMLIB(IPOPT)
RETURN
*
3999 FORMAT(/13H PLQ: ##ITER=,I8,20H OBJECTIVE FUNCTION=,1P,E14.6)
4000 FORMAT(1X,A28,1P,E14.6)
4001 FORMAT(1X,A28,1P,8E12.4/(29X,8E12.4))
4002 FORMAT(//,5X,'SR**2 (XDROIT) = ',1P,D13.5,
> /,5X,'FPOIDS = ',/,(11X,1P,8D13.5))
4003 FORMAT(/8H OPTIONS/8H -------/
1 7H NVAR ,I8,32H (NUMBER OF CONTROL VARIABLES)/
2 7H NCST ,I8,26H (NUMBER OF CONSTRAINTS)/
3 7H MINMAX,I8,37H (=1/-1: MINIMIZATION/MAXIMIZATION)/
4 7H ICONV ,I8,43H (=0/1: EXTERNAL NOT CONVERGED/CONVERGED)/
5 7H NSTPEX,I8,44H (ITERATION INDEX OF QUADRATIC CONSTRAINT)/
6 7H IEDSTP,I8,43H (=1/2: HALF REDUCTION/PARABOLIC FORMULA)/
7 7H IHESS ,I8,29H (=0/1/2: STEEPEST/CG/BFGS)/
8 7H ISEARC,I8,35H (=0/1/2: NO SEARCH/OPTEX/NEWTON)/
9 7H IMTHD ,I8,42H (=1/2/3: SIMPLEX-LEMKE/LEMKE-LEMKE/MAP)/
1 7H ISTEP ,I8,43H (NUMBER OF ITERATIONS WITHOUT STEP-BACK))
4004 FORMAT(/
1 12H REAL PARAM:,1P/12H -----------/
2 7H SR ,D12.4,39H (RADIUS OF THE QUADRATIC CONSTRAINT)/
3 7H EPS1 ,D12.4,13H (NOT USED)/
4 7H EPSEXT,D12.4,31H (EXTERNAL CONVERGENCE LIMIT)/
5 7H EPSIM ,D12.4,31H (INTERNAL CONVERGENCE LIMIT)/
6 7H EPS4 ,D12.4,43H (QUADRATIC CONSTRAINT CONVERGENCE LIMIT)/
7 7H ECOST ,D12.4,17H (UPDATED COST))
4005 FORMAT(/38H PLQ: OBJECTIVE FUNCTION INCREASE FROM,1P,E12.4,
1 3H TO,E12.4/35H RETURN BACK TO PREVIOUS ITERATION.)
4006 FORMAT(/1X,'PLQ: THE QUADRATIC CONSTRAINT RADIUS CANNOT BE FUR',
1 'THER REDUCED')
END
|