summaryrefslogtreecommitdiff
path: root/Donjon/src/PLPNLT.f
blob: e399fd5957c329975190ff9ddbf5c54ffde76327 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
*DECK PLPNLT
      SUBROUTINE PLPNLT(IPOPT,N0,M0,APLUS,PDG,BPLUS,INPLUS,XDROIT,
     > FCOST,GF,XOBJ,IMPR,EPSIM,NCST,GRAD,CONTR,INEGAL,IERR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solves the quasi-linear problem using the external penalty function.
* PLPNLT = Linear Programmation external PeNaLTy function
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): 
* R. Chambon
*
*Parameters: input/ouput
* IPOPT   pointer to the L_OPTIMIZE object.
* N0      number of control variables.
* M0      number of constraints.
* APLUS   coefficient matrix for the linear constraints.
* PDG     weights assigned to control variables in the quadratic
*         constraint.
* BPLUS   right hand sides corresponding to the coefficient matrix.
* INPLUS  constraint relations (=-1 for .GE.; =0 for .EQ.; =1 for .LE.).
* XDROIT  quadratic constraint radius squared.
* FCOST   costs of control variables.
* GF      objective function.
* XOBJ    control variables.
* IMPR    print flag.
* EPSIM   tolerence used for inner linear SIMPLEX calculation.
* NCST    number of constraints.
* GRAD    linearized gradients (GRAD(:,1) are control variable costs
*         and GRAD(:,2:NCST+1) are linear constraint coefficients).
* CONTR   constraint right hand sides.
* INEGAL  constraint relations (=-1 for .GE.; =0 for .EQ.; =1 for .LE.).
*
*Parameters: ouput
* IERR    return code (=0: normal completion).
*
*-----------------------------------------------------------------------
*
      USE GANLIB
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPOPT
      INTEGER N0,M0,INPLUS(M0+1),IMPR,NCST,INEGAL(NCST),IERR
      DOUBLE PRECISION PDG(N0),BPLUS(M0+2),XDROIT,XOBJ(N0),EPSIM,
     > GRAD(N0,NCST+1),CONTR(NCST),APLUS(M0+2,M0+N0+1),GF(N0),FCOST
*----
*  LOCAL VARIABLES
*----
      INTEGER   ITERMX
      PARAMETER (ITERMX=10)
      INTEGER   LENGT,ITYP,I,J,K,ITER
      LOGICAL   LCST(NCST),LCST2(NCST),LTST
      DOUBLE PRECISION NORM,CRIT,LA0E,LACOST
      INTEGER, ALLOCATABLE, DIMENSION(:) :: INPL2
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: CSTWGT,B2,CONTR2,
     > LAGF
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: APLUS2
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(INPL2(M0-NCST+1))
      ALLOCATE(CSTWGT(NCST),B2(M0-NCST+2),CONTR2(NCST))
      ALLOCATE(LAGF(N0),APLUS2(M0-NCST+1,N0+M0-NCST))
*----
*  STEP 0: INITIALIZATION
*  NPM: SIZE OF THE LINEARIZED SYSTEM.
*  M0B: NUMBER OF LINEARIZED CONSTRAINTS FOR THE LA ALGORITHM.
*       CORRESPONDS TO THE NUMBER OF POSSIBLY ACTIVE BOUNDS.
*  NPMB: SIZE OF THE LINEARIZED SYSTEM FOR THE LA ALGORITHM.
*----
      NPM=(M0+1)+N0
      M0B=M0-NCST
      NPMB=N0+M0B
      IF(NCST.GT.0) THEN
         CALL LCMLEN(IPOPT,'CST-WEIGHT',LENGT,ITYP)
         IF(LENGT.EQ.0) THEN
            CALL XABORT('PLPNLT: CONSTRAINTS PENALTIES NON INITIALIZED')
         ELSEIF(LENGT.EQ.NCST) THEN
            CALL LCMGET(IPOPT,'CST-WEIGHT',CSTWGT)
         ELSE
            CALL XABORT('PLPNLT: WRONG NUMBER OF CONSTRAINT WEIGHTS')
         ENDIF
         DO 10 J=1,NCST
            CONTR2(J)=-CONTR(J)
   10    CONTINUE
         LCST2(:NCST)=.TRUE.
         LCST(:NCST)=.TRUE.
      ENDIF
      XOBJ(:N0)=0.0D0
*----
*  INTERNAL ITERATIONS FOR THE LINEAR PROBLEM
*----
      ITER=0
   99 ITER=ITER+1
      LTST=.TRUE.
*----
*  STEP 1: PENALTY FUNCTION EVALUATION
*----
      DO 110 J=1,NCST
         IF(INEGAL(J).NE.0) THEN
            CRIT=CONTR2(J)
            DO 100 I=1,N0
               CRIT=CRIT+GRAD(I,J+1)*XOBJ(I)
  100       CONTINUE
            CRIT=INEGAL(J)*CRIT
            LCST(J)=(CRIT.LE.0.0)
         ENDIF
  110 CONTINUE

      DO 150 I=1,N0
         LAGF(I)=GF(I)
         DO 140 J=1,NCST
            IF(INEGAL(J).EQ.0) THEN
               LAGF(I)=LAGF(I)+GRAD(I,J+1)*CSTWGT(J)*CONTR2(J)
            ELSEIF(.NOT.LCST(J)) THEN
               LAGF(I)=LAGF(I)+GRAD(I,J+1)*CSTWGT(J)*CONTR2(J)
            ENDIF
  140    CONTINUE
  150 CONTINUE

      LACOST=FCOST
      DO 160 J=1,NCST
         IF(INEGAL(J).EQ.0) THEN
            LACOST=LACOST+CSTWGT(J)/2.0*CONTR2(J)**2
         ELSEIF(.NOT.LCST(J)) THEN
            LACOST=LACOST+CSTWGT(J)/2.0*CONTR2(J)**2
         ENDIF
  160 CONTINUE
      IF(ITER.EQ.1) LA0E=LACOST
      IF(IMPR.GE.3) THEN
         WRITE(6,*) 'GF',(GF(I),I=1,N0)
         WRITE(6,*) 'LAGF',(LAGF(I),I=1,N0)
         WRITE(6,*) 'PDG',(PDG(I),I=1,N0)
         WRITE(6,*) 'LACOST',LACOST,'M0B',M0B,'XDROIT',XDROIT
      ENDIF
*----
*  STEP 2: SOLUTION
*  case 1
*  If there is no constraints for the LA problem (M0B=0), 
*    then the solution is obvious: on the hypersphere(radius XDROIT) 
*    in the direction LAGF
*----
      IF(M0B.EQ.0) THEN
      NORM=0.0
      DO 200 I=1,N0
         NORM=NORM+LAGF(I)**2/PDG(I)
  200 CONTINUE
      NORM=NORM**0.5
*
      IF(NORM.EQ.0.0) THEN
         XOBJ(:N0)=0.0D0
      ELSE
         DO 210 I=1,N0
            XOBJ(I)=-XDROIT**0.5*LAGF(I)/PDG(I)/NORM
  210    CONTINUE
      ENDIF
*----
*  CASE 2
*  SOLUTION WITH THE LEMKE METHOD
*----
      ELSE
*
      DO 260 K=1,M0B
         DO 250 I=1,N0
            APLUS2(K,I)=APLUS(NCST+K,I)
  250    CONTINUE
         B2(K)=BPLUS(NCST+K)
         INPL2(K)=INPLUS(NCST+K)
  260 CONTINUE
      DO 270 I=1,N0
         APLUS2(M0B+1,I) = 0.0D0
  270 CONTINUE
      BPLUS(M0B+1)   = 0.0
      INPL2(M0B+1)  = 0
*
      CALL PLMAP2(N0,M0B,APLUS2,PDG,B2,INPL2,XDROIT,LAGF,LACOST,XOBJ,2,
     > EPSIM,IMPR,IERR)
*
      ENDIF
      DO 410 J=1,NCST
         IF(INEGAL(J).NE.0) THEN
            CRIT=CONTR2(J)
            DO 400 I=1,N0
               CRIT=CRIT+GRAD(I,J+1)*XOBJ(I)
  400       CONTINUE
            CRIT=INEGAL(J)*CRIT
            LCST2(J)=(CRIT.LE.0.0)
         ENDIF
  410 CONTINUE
      
      IF((IMPR.GE.2).AND.(NCST.GT.0)) THEN
         WRITE(6,*) (LCST(J),J=1,NCST)
         WRITE(6,*) (LCST2(J),J=1,NCST)
      ENDIF
      DO 420 J=1,NCST
         LTST=LTST.AND.(LCST(J).EQV.LCST2(J))
  420 CONTINUE

      IF((.NOT.LTST) .AND.(ITER.LE.ITERMX)) GO TO 99
*----
*                  k,l
*    STEP 3: SAVE P
*----
      CALL LCMSIX(IPOPT,'OLD-VALUE',1)
      CALL LCMPUT(IPOPT,'F-PENAL-EVAL',1,4,LA0E)
      IF(IMPR.GE.1)   WRITE(6,*) 'LAGF',(LAGF(I),I=1,N0)
      CALL LCMPUT(IPOPT,'DF-LA-PENAL',N0,4,LAGF)
      CALL LCMSIX(IPOPT,' ',0)
*     
      IF(IMPR.GE.1) WRITE(6,*) 'Dvar',(XOBJ(I),I=1,N0)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(APLUS2,LAGF)
      DEALLOCATE(CONTR2,B2,CSTWGT)
      DEALLOCATE(INPL2)
      RETURN
      END