1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
*DECK PLMAP2
SUBROUTINE PLMAP2(N0,M0,APLUS,PDG,BPLUS,INPLUS,XDROIT,COUT,OBJ,
> XOBJ,IMTHD,EPSIM,IMPR,IERR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solves a linear optimization problem with quadratic constraints using
* the method of LEMKE.
* PLMAP2 = Linear Programmation MAP2
*
*Reference:
* J. A. Ferland, 'A linear programming problem with an additional
* quadratic constraint solved by parametric linear complementarity',
* Publication number 497, Departement d'informatique et de recherche
* operationnelle, Universite de Montreal, January 1984.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s):
* A. Hebert and R. Chambon
*
*Parameters: input
* N0 number of control variables.
* M0 number of constraints.
* APLUS coefficient matrix for the linear constraints.
* PDG weights assigned to control variables in the quadratic
* constraint.
* BPLUS right hand sides corresponding to the coefficient matrix.
* INPLUS constraint relations (=-1 for .GE.; =0 for .EQ.; =1 for .LE.).
* XDROIT quadratic constraint radius squared.
* COUT costs of control variables.
* OBJ objective function.
* XOBJ control variables.
* IMTHD type of solution (=1: SIMPLEX/LEMKE; =2: LEMKE/LEMKE).
* EPSIM tolerence used for inner linear SIMPLEX calculation.
* IMPR print flag.
*
*Parameters: ouput
* IERR return code (=0: normal completion).
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER N0,M0,INPLUS(M0+1),IMTHD,IMPR,IERR
DOUBLE PRECISION PDG(N0),BPLUS(M0+2),XDROIT,XOBJ(N0),EPSIM,
> APLUS(M0+2,(M0+1)+N0),COUT(N0),OBJ
*----
* LOCAL VARIABLES
*----
CHARACTER CLNAME*6
DOUBLE PRECISION X,ZMAX,XVAL,SCAL,EPS,FACTOR
INTEGER I,J,M0NEW
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: BINF,BSUP,SCALE
*----
* DATA STATEMENTS
*----
DATA CLNAME /'PLMAP2'/
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(BINF(N0),BSUP(N0),SCALE(N0))
*
EPS=EPSIM
*----
* CONTROL-VARIABLE SCALING
*----
FACTOR=MAX(XDROIT,EPSIM)
DO 10 J=1,N0
SCAL = SQRT(FACTOR/PDG(J))
SCALE(J) = SCAL
COUT(J) = COUT(J)*SCAL
*
PDG(J) = 1.0
BINF(J) = 0.0
BSUP(J) = 0.0
*
DO 20 I=1,M0
APLUS(I,J) = APLUS(I,J)*SCAL
20 CONTINUE
*
10 CONTINUE
*----
* PRINT TABLES AFTER SCALING OF CONTROL VARIABLES
*----
IF(IMPR.GE.5) THEN
CALL PLNTAB(COUT,APLUS,INPLUS,BPLUS,PDG,BINF,BSUP,
> N0,M0,CLNAME//' AFTER SCALING OF VARIABLES')
ENDIF
*
XDROIT = XDROIT/FACTOR
*----
* CONSTRAINT SCALING
*----
DO 30 I=1,M0
ZMAX = ABS(BPLUS(I))
*
DO 40 J=1,N0
ZMAX = MAX(ZMAX,ABS(APLUS(I,J)))
40 CONTINUE
BPLUS(I) = BPLUS(I)/ZMAX
*
DO 42 J=1,N0
APLUS(I,J) = APLUS(I,J)/ZMAX
42 CONTINUE
30 CONTINUE
*----
* COST SCALING
*----
ZMAX = 0.0D0
DO 45 J=1,N0
ZMAX = MAX(ZMAX,ABS(COUT(J)))
45 CONTINUE
*
DO 50 J=1,N0
COUT(J) = COUT(J)/ZMAX
50 CONTINUE
*----
* STEP 1
*----
M0NEW = M0 + 1
DO 55 I=1,N0
BINF(I) = -SQRT(XDROIT)
BSUP(I) = SQRT(XDROIT)
APLUS(M0NEW,I) = 0.0D0
55 CONTINUE
BPLUS(M0NEW) = 0.0D0
*----
* PRINT TABLES AFTER SCALING OF COSTS AND CONSTRAINTS
*----
IF(IMPR.GE.5) THEN
CALL PLNTAB(COUT,APLUS,INPLUS,BPLUS,PDG,BINF,BSUP,N0,M0,
> CLNAME//' AFTER SCALING OF COSTS AND CONSTRAINTS')
ENDIF
*
IF(IMTHD.EQ.1) THEN
*----
* SOLUTION OF A LINEAR OPTIMIZATION PROBLEM USING THE SIMPLEX METHOD
*----
CALL PLSPLX(N0,M0,M0+2,1,COUT,APLUS,BPLUS,INPLUS,BINF,BSUP,
> XOBJ,OBJ,EPS,IMTHD,IMPR,IERR)
*
DO 70 I=1,M0
IF(INPLUS(I).EQ.-1) THEN
DO 60 J=1,N0
APLUS(I,J) = -APLUS(I,J)
60 CONTINUE
BPLUS(I) = -BPLUS(I)
INPLUS(I) = 1
ELSE IF(INPLUS(I).EQ.0) THEN
DO 65 J=1,N0
APLUS(M0NEW,J) = APLUS(M0NEW,J) - APLUS(I,J)
65 CONTINUE
BPLUS(M0NEW) = BPLUS(M0NEW) - BPLUS(I)
ENDIF
70 CONTINUE
ELSE
*----
* SOLUTION OF A LINEAR OPTIMIZATION PROBLEM USING THE LINEAR LEMKE
* METHOD
*----
DO 90 I=1,M0
IF(INPLUS(I).EQ.-1) THEN
DO 75 J=1,N0
APLUS(I,J) = -APLUS(I,J)
75 CONTINUE
BPLUS(I) = -BPLUS(I)
INPLUS(I) = 1
ELSE IF(INPLUS(I).EQ.0) THEN
DO 80 J=1,N0
APLUS(M0NEW,J) = APLUS(M0NEW,J) - APLUS(I,J)
80 CONTINUE
BPLUS(M0NEW) = BPLUS(M0NEW) - BPLUS(I)
ENDIF
90 CONTINUE
CALL PLLINR(N0,M0NEW,M0+2,COUT,APLUS,BPLUS,BINF,BSUP,XOBJ,OBJ,
> EPS,IMPR,IERR)
ENDIF
*
IF(IERR.GE.1) THEN
WRITE (6,6000) IERR
GO TO 500
ENDIF
*
X = 0.0D0
DO 100 J=1,N0
X = X + PDG(J)*XOBJ(J)*XOBJ(J)
100 CONTINUE
IF(IMPR.GE.2) THEN
IF(IMTHD.EQ.1) THEN
WRITE (6,1000) OBJ,X,(XOBJ(I),I=1,N0)
ELSE IF(IMTHD.EQ.2) THEN
WRITE (6,1500) OBJ,X,(XOBJ(I),I=1,N0)
ENDIF
ENDIF
*
IF(IMPR.GE.5) THEN
WRITE(6,*) 'AFTER LINEAR OPTIMIZATION'
WRITE(6,*) 'XOBJ ',(XOBJ(J),J=1,N0)
WRITE(6,*) 'PDG ',(PDG(J),J=1,N0)
WRITE(6,*) 'OBJ ',OBJ
WRITE(6,*) 'X ',X
WRITE(6,*) 'XDROIT ',XDROIT
ENDIF
*----
* SOLUTION OF A LINEAR OPTIMIZATION PROBLEM WITH A QUADRATIC CONSTRAINT
* USING THE GENERAL LEMKE METHOD
*----
IF(X.GT.XDROIT) THEN
DO J=1,N0
APLUS(M0NEW+1,J) = COUT(J)
ENDDO
BPLUS(M0NEW+1) = OBJ
*
CALL PLQUAD(N0,M0NEW,M0+2,APLUS,BPLUS,PDG,XDROIT,COUT,XOBJ,EPS,
> IMPR,IERR)
*
IF(IERR.GE.1) THEN
WRITE(6,2000) IERR
IERR = IERR + 10
GO TO 500
ENDIF
ENDIF
*----
* RESCALE BACK AND PRINT THE SOLUTION
*----
DO 170 J=1,N0
SCAL = SCALE(J)
COUT(J) = COUT(J)*ZMAX/SCAL
XOBJ(J) = XOBJ(J)*SCAL
PDG(J) = FACTOR/SCAL**2
*
DO 175 I=1,M0
APLUS(I,J) = APLUS(I,J)/SCAL
175 CONTINUE
170 CONTINUE
*----
* COMPUTE THE NEW OPTIMAL POINT
*----
X = 0.0D0
OBJ = 0.0D0
DO 180 J=1,N0
X = X + PDG(J)*XOBJ(J)*XOBJ(J)
OBJ = OBJ + XOBJ(J)*COUT(J)
180 CONTINUE
*
IF(IMPR.GE.1) THEN
WRITE (6,3000) OBJ,X,(XOBJ(J),J=1,N0)
WRITE (6,4000)
*
DO 190 I=1,M0
XVAL = BPLUS(I)
DO 185 J=1,N0
XVAL = XVAL - APLUS(I,J)*XOBJ(J)
185 CONTINUE
WRITE (6,5000) I,XVAL
190 CONTINUE
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
500 DEALLOCATE(SCALE,BSUP,BINF)
RETURN
*
1000 FORMAT(//,5X,'SOLUTION WITHOUT QUADRATIC CONSTRAINT (SIMPLEX) :',
> /,5X,'------------------------------------------------',
> /,5X,'OBJECTIVE FUNCTION : ',1P,E12.5,
> /,5X,'QUADRATIC CONSTRAINT : ',1P,E12.5,
> /,5X,'CONTROL VARIABLES : ',/,(10X,10E12.4))
1500 FORMAT(//,5X,'SOLUTION WITHOUT QUADRATIC CONSTRAINT (LINR) :',
> /,5X,'---------------------------------------------',
> /,5X,'OBJECTIVE FUNCTION : ',1P,E12.5,
> /,5X,'QUADRATIC CONSTRAINT : ',1P,E12.5,
> /,5X,'CONTROL VARIABLES : ',/,(10X,10E12.4))
2000 FORMAT(//,5X,'PLMAP2: ECHEC DU MODULE QUADR IERR = ',I2)
3000 FORMAT(//,5X,'FINAL SOLUTION :',
> /,5X,'---------------------',
> /,5X,'OBJECTIVE FUNCTION : ',1P,E12.5,
> /,5X,'QUADRATIC CONSTRAINT : ',1P,E12.5,
> /,5X,'CONTROL VARIABLES : ',/,(10X,10E12.4))
4000 FORMAT(//,5X,'CONSTRAINT DEVIATIONS :',/)
5000 FORMAT(2X,I3,'...',2X,1P,E12.4)
6000 FORMAT(//,5X,'PLMAP2: FAILURE OF LINEAR ALGORITHM (IERR=',I5,')')
END
|