1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
*DECK PLMAP1
SUBROUTINE PLMAP1(N0,M0,APLUS,PDG,BPLUS,INPLUS,XDROIT,COUT,OBJ,
> XOBJ,IMTHD,IMPR,IERR,BINF,BSUP,SCALE,PX,RX,DELTA,BGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solves a linear optimization problem with quadratic constraint using
* the method of approximation programming (MAP).
* PLMAP1 = Linear Programmation MAP1
*
*Reference:
* R.E. Griffith and R.A. Stewart, 'A non-linear programming technique
* for the optimization of continuous processing systems', Management
* Science, Vol. 7, NO. 4, 379 (1961).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s):
* A. Hebert and R. Chambon
*
*Parameters: input
* N0 number of control variables.
* M0 number of constraints.
* APLUS coefficient matrix for the linear constraints.
* PDG weights assigned to control variables in the quadratic
* constraint.
* BPLUS right hand sides corresponding to the coefficient matrix.
* INPLUS constraint relations (=-1 for .GE.; =0 for .EQ.; =1 for .LE.).
* XDROIT quadratic constraint radius squared.
* COUT costs of control variables.
* OBJ objective function.
* XOBJ control variables.
* IMTHD type of solution (=1: SIMPLEX/LEMKE; =3: MAP).
* IMPR print flag.
*
*Parameters: ouput
* IERR return code (=0: normal completion).
*
*Parameters: scratch
* BINF
* BSUP
* SCALE
* PX
* RX
* DELTA
* BGAR
*
*-----------------------------------------------------------------------
*
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER N0,M0,INPLUS(M0+1),IMTHD,IMPR,IERR
DOUBLE PRECISION PDG(N0),BPLUS(M0+2),XDROIT,XOBJ(N0),BINF(N0),
> BSUP(N0),SCALE(N0),PX(N0),RX(N0),DELTA(N0),BGAR(M0+1),
> APLUS(M0+2,N0),COUT(N0),OBJ
*----
* LOCAL VARIABLES
*----
DOUBLE PRECISION DELF,X,DUMY,ZMAX,XVAL,SCAL,DELX,TEMP,ERR,
> CONT,EPSIR,EPS,EPSS
INTEGER ITER,ITMAX,I,J,M
CHARACTER CLNAME*6
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: ZMAXC,BGAR0
*----
* DATA STATEMENTS
*----
DATA CLNAME /'PLMAP'/
*
EPS = 0.0001D0
EPSIR =EPS
ITMAX = 100
*----
* CONTROL-VARIABLE SCALING
*----
DO 10 J=1,N0
SCAL = SQRT(XDROIT/PDG(J))
SCALE(J) = SCAL
COUT(J) = COUT(J)*SCAL
*
PDG(J) = 1.0D0
BINF(J) = 0.0D0
BSUP(J) = 0.0D0
*
DO 20 I=1,M0
APLUS(I,J) = APLUS(I,J)*SCAL
20 CONTINUE
*
10 CONTINUE
*----
* PRINT TABLES AFTER SCALING OF CONTROL VARIABLES
*----
IF(IMPR.GE.5) THEN
CALL PLNTAB(COUT,APLUS,INPLUS,BPLUS,PDG,BINF,BSUP,
> N0,M0,CLNAME//' AFTER SCALING OF CONTROL VARIABLES')
ENDIF
*
XDROIT=1.0D0
*----
* CONSTRAINT SCALING
*----
ALLOCATE(ZMAXC(M0))
DO 30 I=1,M0
ZMAX = ABS(BPLUS(I))
*
DO 40 J=1,N0
ZMAX = MAX(ZMAX,ABS(APLUS(I,J)))
40 CONTINUE
BGAR(I) = BPLUS(I)/ZMAX
*
DO 42 J=1,N0
APLUS(I,J) = APLUS(I,J)/ZMAX
42 CONTINUE
ZMAXC(I) = ZMAX
30 CONTINUE
*----
* COST SCALING
*----
ZMAX = 0.0D0
DO 45 J=1,N0
ZMAX = MAX(ZMAX,ABS(COUT(J)))
45 CONTINUE
DO 50 J=1,N0
COUT(J) = COUT(J)/ZMAX
50 CONTINUE
*----
* PRINT TABLES AFTER SCALING OF COSTS AND CONSTRAINTS
*----
IF(IMPR.GE.5) THEN
CALL PLNTAB(COUT,APLUS,INPLUS,BGAR,PDG,BINF,BSUP,N0,M0,
> CLNAME//' AFTER SCALING OF COSTS AND CONSTRAINTS')
ENDIF
ALLOCATE(BGAR0(M0))
DO 52 I=1,M0
BGAR0(I) = BGAR(I)
52 CONTINUE
*----
* INITIAL ESTIMATES
*----
DELX = SQRT(XDROIT)
EPSS = EPS*DELX
*
DO 55 I=1,N0
DELTA(I) = DELX/10.0
RX(I) = 0.0
55 CONTINUE
TEMP = DELX/SQRT(REAL(N0))/10
*----
* MAP ITERATIONS
*----
ITER = 0
60 ITER = ITER + 1
CONT = 0.0
DO 70 I=1,M0+1
BGAR(I) = BGAR0(I)
70 CONTINUE
*----
* CONTROL VARIABLE BOUNDS
*----
DO 90 I=1,N0
IF(ITER.EQ.1) THEN
! XOBJ(I) = EPSIR*10.0
XOBJ(I) = 0.0
BINF(I) = -TEMP
BSUP(I) = TEMP
ELSE
BINF(I) = -DELTA(I)
BSUP(I) = DELTA(I)
ENDIF
*----
* LINEARIZATION OF THE QUADRATIC CONSTRAINT
*----
CONT = CONT + XOBJ(I)**2
APLUS(M0+1,I) = 2.0*XOBJ(I)
DO 95 J=1,M0
BGAR(J) = BGAR(J) - APLUS(J,I)*XOBJ(I)
95 CONTINUE
90 CONTINUE
*
INPLUS(M0+1) = 1
BGAR(M0+1) = XDROIT - CONT
M = M0 + 1
*----
* REORGANIZE TABLES FOR SIMPLEX
*----
DO 120 I=1,M
DUMY = 0.0D0
*
DO 100 J=1,N0
DUMY = DUMY + APLUS(I,J)*BINF(J)
100 CONTINUE
*
BGAR(I) = BGAR(I) - DUMY
IF(BGAR(I).GE.0.0) GOTO 120
*
DO 110 J=1,N0
APLUS(I,J) = -APLUS(I,J)
110 CONTINUE
*
BGAR(I) = -BGAR(I)
BGAR0(I)= -BGAR0(I)
BPLUS(I) = -BPLUS(I)
INPLUS(I) = -INPLUS(I)
*
120 CONTINUE
*
DO 130 J=1,N0
BSUP(J) = BSUP(J) - BINF(J)
BINF(J) = 0.0
130 CONTINUE
*----
* PRINT SIMPLEX TABLES
*----
IF(IMPR.GE.5) THEN
CALL PLNTAB(COUT,APLUS,INPLUS,BGAR ,XOBJ ,BINF ,BSUP,N0,M0,
> CLNAME//' AFTER REORGANIZATION FOR SIMPLEX')
ENDIF
*----
* SOLUTION OF A LINEAR PROGRAMMING PROBLEM USING THE SIMPLEX
*----
CALL PLSPLX(N0,M,M0+2,1,COUT,APLUS,BGAR,INPLUS,BINF,BSUP,PX,
> DELF,EPSS,IMTHD,IMPR,IERR)
*
DO 140 I=1,N0
IF(ITER.EQ.1) THEN
PX(I) = PX(I) - TEMP
ELSE
PX(I) = PX(I) - DELTA(I)
ENDIF
140 CONTINUE
*----
* SOLUTION OF CURRENT ITERATION
*----
IF(IMPR.GE.2) THEN
IF(((ITER.GE.1).AND.(IMPR.LE.2)).OR.(IMPR.GE.3)) THEN
WRITE (6,1000)
ENDIF
WRITE (6,2000) ITER,DELF,(PX(I),I=1,N0)
ENDIF
*----
* DEGENERESCENCE OR EPS TOO SMALL
*----
IF(IERR.EQ.1) THEN
WRITE(6,3000) ITER
IERR = 3
RETURN
*----
* NO SOLUTION IF ITER=1
*----
ELSE IF(IERR.EQ.2) THEN
IF(IMPR.GE.1) WRITE(6,4000) ITER
IF(ITER.GE.ITMAX) RETURN
ENDIF
*
ERR = 0.0
DO 160 I=1,N0
*
IF((RX(I)*PX(I).LT.0.0).AND.(IERR.EQ.0)) THEN
DELTA(I) = DELTA(I)*0.5
ENDIF
*
RX(I) = PX(I)
XOBJ(I) = XOBJ(I) + PX(I)
ERR = ERR + PX(I)**2
160 CONTINUE
*
ERR = SQRT(ERR)
EPSS = EPS*DELX/10.0
*
IF(IMPR.GE.1) THEN
WRITE(6,2000) ITER,DELF,(XOBJ(I),I=1,N0)
WRITE(6,2000) ITER,0.0,(DELTA(I),I=1,N0)
ENDIF
*
IF(ERR.LE.EPSS) THEN
IERR = 0
GOTO 170
ENDIF
*
IF(ITER.GE.ITMAX) THEN
IERR = 5
WRITE (6,5000) ITER
RETURN
ENDIF
GO TO 60
*----
* RESCALE BACK AND PRINT THE SOLUTION
*----
170 DO 175 J=1,N0
SCAL = SCALE(J)
COUT(J) = COUT(J)*ZMAX/SCAL
XOBJ(J) = XOBJ(J)*SCAL
PDG(J) = XDROIT/SCAL**2
*
DO 177 I=1,M0
APLUS(I,J) = APLUS(I,J)/SCAL
177 CONTINUE
175 CONTINUE
*
X = 0.0D0
OBJ = 0.0D0
DO 180 J=1,N0
X = X + PDG(J)*XOBJ(J)*XOBJ(J)
OBJ = OBJ + XOBJ(J)*COUT(J)
180 CONTINUE
*
IF(IMPR.GE.1) THEN
WRITE (6,6000) OBJ,X,(XOBJ(J),J=1,N0)
IF(M0.GT.0) WRITE (6,7000)
*
DO 190 I=1,M0
XVAL = BPLUS(I)
DO 185 J=1,N0
XVAL = XVAL - APLUS(I,J)*XOBJ(J)*ZMAXC(I)/SCALE(J)
185 CONTINUE
WRITE (6,8000) I,XVAL
190 CONTINUE
ENDIF
DEALLOCATE(ZMAXC,BGAR0)
RETURN
*
1000 FORMAT(/,5X,'ITERATION',8X,'DELF',5X,'CONTROL VARIABLES')
2000 FORMAT(5X,I6,5X,8E12.4,/,(28X,5E12.4))
3000 FORMAT(5X,I6,5X,'DEGENERESCENCE OR EPS TOO SMALL')
4000 FORMAT(5X,I6,5X,'NO SOLUTION')
5000 FORMAT(5X,I6,5X,'MAXIMUM ITERATION REACHED')
6000 FORMAT(//,5X,'FINAL SOLUTION (MAP1-SIMPLEX) ',
> /,5X,'------------------------',
> /,5X,'OBJECTIVE FUNCTION : ',1P,E12.5,
> /,5X,'QUADRATIC CONSTRAINT : ',1P,E12.5,
> /,5X,'CONTROL VARIABLES : ',/,(10X,10E12.4))
7000 FORMAT(//,5X,'CONSTRAINT DEVIATIONS : ',/)
8000 FORMAT(2X,I3,'...',2X,1P,D12.4)
END
|