summaryrefslogtreecommitdiff
path: root/Donjon/src/PLMAP1.f
blob: 3f4d6774c9b0c3ae70196ca39f3ab2132c27588b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
*DECK PLMAP1
      SUBROUTINE PLMAP1(N0,M0,APLUS,PDG,BPLUS,INPLUS,XDROIT,COUT,OBJ,
     > XOBJ,IMTHD,IMPR,IERR,BINF,BSUP,SCALE,PX,RX,DELTA,BGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solves a linear optimization problem with quadratic constraint using
* the method of approximation programming (MAP). 
* PLMAP1 = Linear Programmation MAP1
*
*Reference:
*  R.E. Griffith and R.A. Stewart, 'A non-linear programming technique
*  for the optimization of continuous processing systems', Management
*  Science, Vol. 7, NO. 4, 379 (1961).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): 
* A. Hebert and R. Chambon
*
*Parameters: input
* N0      number of control variables.
* M0      number of constraints.
* APLUS   coefficient matrix for the linear constraints.
* PDG     weights assigned to control variables in the quadratic
*         constraint.
* BPLUS   right hand sides corresponding to the coefficient matrix.
* INPLUS  constraint relations (=-1 for .GE.; =0 for .EQ.; =1 for .LE.).
* XDROIT  quadratic constraint radius squared.
* COUT    costs of control variables.
* OBJ     objective function.
* XOBJ    control variables.
* IMTHD   type of solution (=1: SIMPLEX/LEMKE; =3: MAP).
* IMPR    print flag.
*
*Parameters: ouput
* IERR    return code (=0: normal completion).
*
*Parameters: scratch
* BINF
* BSUP
* SCALE
* PX
* RX
* DELTA
* BGAR
*
*-----------------------------------------------------------------------
*
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER N0,M0,INPLUS(M0+1),IMTHD,IMPR,IERR
      DOUBLE PRECISION PDG(N0),BPLUS(M0+2),XDROIT,XOBJ(N0),BINF(N0),
     > BSUP(N0),SCALE(N0),PX(N0),RX(N0),DELTA(N0),BGAR(M0+1),
     > APLUS(M0+2,N0),COUT(N0),OBJ
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION  DELF,X,DUMY,ZMAX,XVAL,SCAL,DELX,TEMP,ERR,
     > CONT,EPSIR,EPS,EPSS
      INTEGER     ITER,ITMAX,I,J,M
      CHARACTER   CLNAME*6
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: ZMAXC,BGAR0
*----
*  DATA STATEMENTS
*----
      DATA     CLNAME /'PLMAP'/
*
      EPS   = 0.0001D0
      EPSIR =EPS
      ITMAX = 100
*----
*  CONTROL-VARIABLE SCALING
*----
      DO 10 J=1,N0
         SCAL = SQRT(XDROIT/PDG(J))
         SCALE(J) = SCAL
         COUT(J) = COUT(J)*SCAL
*
         PDG(J)  = 1.0D0
         BINF(J) = 0.0D0
         BSUP(J) = 0.0D0
*
         DO 20 I=1,M0
            APLUS(I,J) = APLUS(I,J)*SCAL
   20    CONTINUE
*
  10  CONTINUE
*----
*  PRINT TABLES AFTER SCALING OF CONTROL VARIABLES
*----
      IF(IMPR.GE.5) THEN
        CALL PLNTAB(COUT,APLUS,INPLUS,BPLUS,PDG,BINF,BSUP,
     >              N0,M0,CLNAME//' AFTER SCALING OF CONTROL VARIABLES')
      ENDIF
*
      XDROIT=1.0D0
*----
*  CONSTRAINT SCALING
*----
      ALLOCATE(ZMAXC(M0))
      DO 30 I=1,M0
         ZMAX = ABS(BPLUS(I))
*
         DO 40 J=1,N0
            ZMAX = MAX(ZMAX,ABS(APLUS(I,J)))
   40    CONTINUE
         BGAR(I) = BPLUS(I)/ZMAX
*
         DO 42 J=1,N0
            APLUS(I,J) = APLUS(I,J)/ZMAX
   42    CONTINUE
         ZMAXC(I) = ZMAX
  30  CONTINUE
*----
*  COST SCALING
*----
      ZMAX = 0.0D0
      DO 45 J=1,N0
         ZMAX = MAX(ZMAX,ABS(COUT(J)))
   45 CONTINUE
      DO 50 J=1,N0
         COUT(J) = COUT(J)/ZMAX
   50 CONTINUE
*----
*  PRINT TABLES AFTER SCALING OF COSTS AND CONSTRAINTS
*----
      IF(IMPR.GE.5) THEN
        CALL PLNTAB(COUT,APLUS,INPLUS,BGAR,PDG,BINF,BSUP,N0,M0,
     >              CLNAME//' AFTER SCALING OF COSTS AND CONSTRAINTS')
      ENDIF
      ALLOCATE(BGAR0(M0))
      DO 52 I=1,M0
         BGAR0(I) = BGAR(I)
   52 CONTINUE
*----
*  INITIAL ESTIMATES
*----
      DELX = SQRT(XDROIT)
      EPSS = EPS*DELX
*
      DO 55 I=1,N0
         DELTA(I) = DELX/10.0
         RX(I)    = 0.0
   55 CONTINUE
      TEMP = DELX/SQRT(REAL(N0))/10
*----
*  MAP ITERATIONS
*----
      ITER = 0
   60 ITER = ITER + 1
      CONT = 0.0
      DO 70 I=1,M0+1
         BGAR(I) = BGAR0(I)
   70 CONTINUE
*----
*  CONTROL VARIABLE BOUNDS
*----
      DO 90 I=1,N0
         IF(ITER.EQ.1) THEN
!            XOBJ(I) = EPSIR*10.0
            XOBJ(I) = 0.0
            BINF(I) = -TEMP
            BSUP(I) = TEMP
         ELSE
            BINF(I) = -DELTA(I)
            BSUP(I) = DELTA(I)
         ENDIF
*----
*  LINEARIZATION OF THE QUADRATIC CONSTRAINT
*----
         CONT = CONT + XOBJ(I)**2
         APLUS(M0+1,I) = 2.0*XOBJ(I)
         DO 95 J=1,M0
            BGAR(J) = BGAR(J) - APLUS(J,I)*XOBJ(I)
   95    CONTINUE
  90  CONTINUE
*
      INPLUS(M0+1) = 1
      BGAR(M0+1)   = XDROIT - CONT
      M = M0 + 1
*----
*  REORGANIZE TABLES FOR SIMPLEX
*----
      DO 120 I=1,M
         DUMY = 0.0D0
*
         DO 100 J=1,N0
            DUMY = DUMY + APLUS(I,J)*BINF(J)
  100    CONTINUE
*
         BGAR(I) = BGAR(I) - DUMY
         IF(BGAR(I).GE.0.0) GOTO 120
*
         DO 110 J=1,N0
            APLUS(I,J) = -APLUS(I,J)
  110    CONTINUE
*
         BGAR(I)   = -BGAR(I)
         BGAR0(I)= -BGAR0(I)
         BPLUS(I)  = -BPLUS(I)
         INPLUS(I) = -INPLUS(I)
*
  120 CONTINUE
*
      DO 130 J=1,N0
         BSUP(J) = BSUP(J) - BINF(J)
         BINF(J) = 0.0
  130 CONTINUE
*----
*  PRINT SIMPLEX TABLES
*----
      IF(IMPR.GE.5) THEN
        CALL PLNTAB(COUT,APLUS,INPLUS,BGAR ,XOBJ  ,BINF  ,BSUP,N0,M0,
     >              CLNAME//' AFTER REORGANIZATION FOR SIMPLEX')
      ENDIF
*----
*  SOLUTION OF A LINEAR PROGRAMMING PROBLEM USING THE SIMPLEX
*----
      CALL PLSPLX(N0,M,M0+2,1,COUT,APLUS,BGAR,INPLUS,BINF,BSUP,PX,
     >          DELF,EPSS,IMTHD,IMPR,IERR)
*
      DO 140 I=1,N0
         IF(ITER.EQ.1) THEN
            PX(I) = PX(I) - TEMP
         ELSE
            PX(I) = PX(I) - DELTA(I)
         ENDIF
  140 CONTINUE
*----
*  SOLUTION OF CURRENT ITERATION
*----
      IF(IMPR.GE.2) THEN
         IF(((ITER.GE.1).AND.(IMPR.LE.2)).OR.(IMPR.GE.3)) THEN
            WRITE (6,1000)
         ENDIF
         WRITE (6,2000) ITER,DELF,(PX(I),I=1,N0)
      ENDIF
*----
*  DEGENERESCENCE OR EPS TOO SMALL
*----
      IF(IERR.EQ.1) THEN
         WRITE(6,3000) ITER
         IERR = 3
         RETURN
*----
*  NO SOLUTION IF ITER=1
*----
      ELSE IF(IERR.EQ.2) THEN
         IF(IMPR.GE.1) WRITE(6,4000) ITER
         IF(ITER.GE.ITMAX) RETURN
      ENDIF
*
      ERR = 0.0
      DO 160 I=1,N0
*
         IF((RX(I)*PX(I).LT.0.0).AND.(IERR.EQ.0)) THEN
            DELTA(I) = DELTA(I)*0.5
         ENDIF
*
         RX(I)   = PX(I)
         XOBJ(I) = XOBJ(I) + PX(I)
         ERR = ERR + PX(I)**2
  160 CONTINUE
*
      ERR  = SQRT(ERR)
      EPSS = EPS*DELX/10.0
*
      IF(IMPR.GE.1) THEN
         WRITE(6,2000) ITER,DELF,(XOBJ(I),I=1,N0)
         WRITE(6,2000) ITER,0.0,(DELTA(I),I=1,N0)
      ENDIF
*
      IF(ERR.LE.EPSS) THEN
         IERR = 0
         GOTO 170
      ENDIF
*
      IF(ITER.GE.ITMAX) THEN
         IERR = 5
         WRITE (6,5000) ITER
         RETURN
      ENDIF
      GO TO 60
*----
*  RESCALE BACK AND PRINT THE SOLUTION
*----
  170 DO 175 J=1,N0
         SCAL    = SCALE(J)
         COUT(J) = COUT(J)*ZMAX/SCAL
         XOBJ(J) = XOBJ(J)*SCAL
         PDG(J)  = XDROIT/SCAL**2
*
         DO 177 I=1,M0
            APLUS(I,J) = APLUS(I,J)/SCAL
  177    CONTINUE
  175 CONTINUE
*
      X   = 0.0D0
      OBJ = 0.0D0
      DO 180 J=1,N0
         X   = X   + PDG(J)*XOBJ(J)*XOBJ(J)
         OBJ = OBJ + XOBJ(J)*COUT(J)
  180 CONTINUE
*
      IF(IMPR.GE.1) THEN
         WRITE (6,6000) OBJ,X,(XOBJ(J),J=1,N0)
         IF(M0.GT.0) WRITE (6,7000)
*
         DO 190 I=1,M0
            XVAL = BPLUS(I)
            DO 185 J=1,N0
               XVAL = XVAL - APLUS(I,J)*XOBJ(J)*ZMAXC(I)/SCALE(J)
  185       CONTINUE
            WRITE (6,8000) I,XVAL
  190    CONTINUE
      ENDIF
      DEALLOCATE(ZMAXC,BGAR0)
      RETURN
*
1000  FORMAT(/,5X,'ITERATION',8X,'DELF',5X,'CONTROL VARIABLES')
2000  FORMAT(5X,I6,5X,8E12.4,/,(28X,5E12.4))
3000  FORMAT(5X,I6,5X,'DEGENERESCENCE OR EPS TOO SMALL')
4000  FORMAT(5X,I6,5X,'NO SOLUTION')
5000  FORMAT(5X,I6,5X,'MAXIMUM ITERATION REACHED')
6000  FORMAT(//,5X,'FINAL SOLUTION (MAP1-SIMPLEX) ',
     >        /,5X,'------------------------',
     >        /,5X,'OBJECTIVE FUNCTION    : ',1P,E12.5,
     >        /,5X,'QUADRATIC CONSTRAINT  : ',1P,E12.5,
     >        /,5X,'CONTROL VARIABLES     : ',/,(10X,10E12.4))
7000  FORMAT(//,5X,'CONSTRAINT DEVIATIONS : ',/)
8000  FORMAT(2X,I3,'...',2X,1P,D12.4)
      END