1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
*DECK PLDRV
SUBROUTINE PLDRV(IPOPT,N0,NCST,M0,MINMAX,IMTHD,FCOST,XOBJ,PDG,
> GRAD,INEGAL,CONTR,DINF,DSUP,XDROIT,EPSIM,IMPR,IERR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Prepares the different matrices for the resolution of a linear
* optimisation problem with a quadratic constraint. The different
* available methods are the MAP technique, the lemke, the augmented-
* Lagrangian and the penalty function.
* PLDRV = Linear Programmation DRiVer for options
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s):
* A. Hebert and R. Chambon
*
*Parameters: input
* IPOPT pointer to the L_OPTIMIZE object.
* N0 number of control variables.
* NCST number of constraints.
* M0 number of constraints plus the number of lower/upper bounds
* intercepting the quadratic constraint.
* MINMAX type of optimization (=-1: minimize; =1: maximize).
* IMTHD type of solution (=1: SIMPLEX/LEMKE; =2: LEMKE/LEMKE;
* =3: MAP; =4: Augmented Lagragian; =5: External penalty
* funnction).
* FCOST objective function.
* XOBJ control variables.
* PDG weights assigned to control variables in the quadratic
* constraint.
* GRAD linearized gradients (GRAD(:,1) are control variable costs
* and GRAD(:,2:NCST+1) are linear constraint coefficients).
* INEGAL constraint relations (=-1 for .GE.; =0 for .EQ.; =1 for .LE.).
* CONTR constraint right hand sides.
* DINF lower bounds of control variables.
* DSUP upper bounds of control variables.
* XDROIT quadratic constraint radius squared.
* EPSIM tolerence used for inner linear LEMKE or SIMPLEX calculation.
* IMPR print flag.
*
*Parameters: ouput
* IERR return code (=0: normal completion).
*
*-----------------------------------------------------------------------
*
USE GANLIB
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPOPT
INTEGER N0,NCST,M0,MINMAX,IMTHD,INEGAL(NCST),IMPR,IERR
DOUBLE PRECISION FCOST,XOBJ(N0),PDG(N0),GRAD(N0,NCST+1),
> CONTR(NCST),DINF(N0),DSUP(N0),XDROIT,EPSIM
*----
* LOCAL VARIABLES
*----
INTEGER ME,MI,I,J,NPM
DOUBLE PRECISION XX
CHARACTER CLNAME*6
INTEGER, ALLOCATABLE, DIMENSION(:) :: INPLUS
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: BPLUS,GF
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: APLUS
*----
* DATA STATEMENTS
*----
DATA CLNAME /'PLDRV'/
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(INPLUS(M0+1))
ALLOCATE(BPLUS(M0+2),GF(N0),APLUS(M0+2,(M0+1)+N0))
*----
* SET COSTS OF CONTROL VARIABLES
*----
DO 10 I=1,N0
GF(I)=GRAD(I,1)*REAL(MINMAX)
10 CONTINUE
*----
* ORGANIZE TABLES APLUS AND BPLUS FOR EQUALITY CONSTRAINTS
*----
ME=0
DO 30 I=1,NCST
IF(INEGAL(I).EQ.0) THEN
ME = ME + 1
DO 20 J=1,N0
APLUS(ME,J) = GRAD(J,I+1)
20 CONTINUE
BPLUS(ME) = CONTR(I)
INPLUS(ME) = 0
ENDIF
30 CONTINUE
*----
* ORGANIZE TABLES APLUS AND BPLUS FOR INEQUALITY CONSTRAINTS
*----
MI=0
DO 50 I=1,NCST
IF(INEGAL(I).NE.0) THEN
MI = MI + 1
DO 40 J=1,N0
APLUS(ME+MI,J) = GRAD(J,I+1)
40 CONTINUE
BPLUS(ME+MI) = CONTR(I)
INPLUS(ME+MI) = INEGAL(I)
ENDIF
50 CONTINUE
*----
* ORGANIZE TABLES APLUS AND BPLUS FOR CONTROL-VARIABLE BOUNDS
*----
DO 80 I=1,N0
XX = SQRT(XDROIT/PDG(I))
IF(DINF(I).GT.-XX) THEN
MI = MI + 1
DO 60 J=1,N0
APLUS(ME+MI,J) = 0.0D0
60 CONTINUE
APLUS(ME+MI,I) = 1.0D0
BPLUS(ME+MI) = DINF(I)
INPLUS(ME+MI) = -1
ENDIF
IF(DSUP(I).LT.XX) THEN
MI = MI + 1
DO 70 J=1,N0
APLUS(ME+MI,J) = 0.0D0
70 CONTINUE
APLUS(ME+MI,I) = 1.0D0
BPLUS(ME+MI) = DSUP(I)
INPLUS(ME+MI) = 1
ENDIF
80 CONTINUE
*
DO 90 J=1,N0
APLUS(M0+1,J) = 0.0D0
90 CONTINUE
BPLUS(M0+1) = 0.0D0
INPLUS(M0+1) = 0
*
IF(M0.NE.ME+MI) THEN
WRITE (6,1000) M0,ME,MI
CALL XABORT('PLDRV: M0 AND ME+MI ARE NOT THE SAME')
ENDIF
*----
* PRINT THE QUASILINEAR PROBLEM
*----
IF(IMPR.GE.5) THEN
CALL PLNTAB(GF,APLUS,INPLUS,BPLUS,PDG,DINF,DSUP,N0,M0,
> CLNAME)
ENDIF
*----
* LEMKE METHOD
*----
NPM=(M0+1)+N0
IF(IMTHD.LE.2) THEN
CALL PLMAP2(N0,M0,APLUS,PDG,BPLUS,INPLUS,XDROIT,GF,FCOST,XOBJ,
1 IMTHD,EPSIM,IMPR,IERR)
*----
* MAP
*----
ELSE IF(IMTHD.EQ.3) THEN
CALL PLMAP1(N0,M0,APLUS,PDG,BPLUS,INPLUS,XDROIT,GF,FCOST,
1 XOBJ,IMTHD,IMPR,IERR)
*----
* AUGMENTED LAGRANGIAN
*----
ELSE IF(IMTHD.EQ.4) THEN
CALL PLLA(IPOPT,N0,M0,APLUS,PDG,BPLUS,INPLUS,XDROIT,
1 FCOST,GF,XOBJ,IMPR,EPSIM,NCST,GRAD,CONTR,INEGAL,IERR)
*----
* EXTERNAL PENALTY METHOD
*----
ELSE IF(IMTHD.EQ.5) THEN
CALL PLPNLT(IPOPT,N0,M0,APLUS,PDG,BPLUS,INPLUS,XDROIT,
1 FCOST,GF,XOBJ,IMPR,EPSIM,NCST,GRAD,CONTR,INEGAL,IERR)
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(APLUS,GF,BPLUS)
DEALLOCATE(INPLUS)
RETURN
*
1000 FORMAT(/' PLDRV: INCONSISTENCY BETWEEN M0 AND ME+MI ',3I5)
END
|