summaryrefslogtreecommitdiff
path: root/Donjon/src/PKIRHO.f
blob: ad560a543fe2e54e8281c8b71d94b12b6d7b5bfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
*DECK PKIRHO
      SUBROUTINE PKIRHO(IPMAP,NALPHA,T,H,PARAMI,PARAMB,RHO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the reactivity during a Runge-Kutta time step taking into
* account feedback effects.
*
*Copyright:
* Copyright (C) 2017 Ecole Polytechnique de Montreal
* This library is free software; you can redIribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): 
* A. Hebert
*
*Parameters: input
* IPMAP   pointer to the point kinetic directory
* NALPHA  number of feedback parameters
* T       time at beggining of step
* H       time-step duration
* PARAMI  initial values of the global parameters corresponding to
*         RHO=0
* PARAMB  values of global parameters at beginning of stage
*
*Parameters: ouput
* PARAMB  values of global parameters at end of Runge-Kutta time step
* RHO     reactivity during Runge-Kutta time step
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  Subroutine arguments
*----
      TYPE(C_PTR) IPMAP
      INTEGER NALPHA
      REAL PARAMI(NALPHA),PARAMB(NALPHA)
      DOUBLE PRECISION T,H,RHO(3)
*----
*  Local variables
*----
      TYPE(C_PTR) JPPAR,KPPAR
      TYPE(C_PTR) X_PTR,Y_PTR
      DOUBLE PRECISION TS(3),DSUM
      LOGICAL LCUBIC
*----
*  Allocatable arrays
*----
      REAL, POINTER, DIMENSION(:) :: X,Y
      REAL, ALLOCATABLE, DIMENSION(:) :: TERP,GAR
      REAL, ALLOCATABLE, DIMENSION(:,:) :: PARAM
*----
*  Compute the values of the global parameters during the time step
*----
      TS(1)=T
      TS(2)=T+H/2.0D0
      TS(3)=T+H
      ALLOCATE(PARAM(3,NALPHA))
      DO IAL=1,NALPHA
         PARAM(:3,IAL)=PARAMB(IAL)
      ENDDO
      JPPAR=LCMGID(IPMAP,'ALPHA')
      DO IAL=1,NALPHA
        KPPAR=LCMGIL(JPPAR,IAL)
        CALL LCMLEN(KPPAR,'TIME-LAW-T',NXY,ITYLCM)
        IF(NXY.NE.0) THEN
          ALLOCATE(TERP(NXY))
          CALL LCMGPD(KPPAR,'TIME-LAW-T',X_PTR)
          CALL C_F_POINTER(X_PTR,X,(/ NXY /))
          CALL LCMGPD(KPPAR,'TIME-LAW-P',Y_PTR)
          CALL C_F_POINTER(Y_PTR,Y,(/ NXY /))
          CALL LCMGET(KPPAR,'TIME-LAW-I',LCUBIC)
          DO I=1,3
            CALL ALTERP(LCUBIC,NXY,X,REAL(TS(I)),.FALSE.,TERP)
            DSUM=0.0D0
            DO J=1,NXY
              DSUM=DSUM+TERP(J)*Y(J)
            ENDDO
            PARAM(I,IAL)=REAL(DSUM)
          ENDDO
          PARAMB(IAL)=PARAM(3,IAL)
          DEALLOCATE(TERP)
        ENDIF
      ENDDO
*----
*  Compute the reactivity
*----
      RHO(:3)=0.0D0
      JPPAR=LCMGID(IPMAP,'ALPHA')
      DO IAL=1,NALPHA
        KPPAR=LCMGIL(JPPAR,IAL)
        CALL LCMLEN(KPPAR,'ALPHA-LAW-P',NXY,ITYLCM)
        IF(NXY.NE.0) THEN
          ALLOCATE(TERP(NXY),GAR(NXY))
          CALL LCMGPD(KPPAR,'ALPHA-LAW-P',X_PTR)
          CALL C_F_POINTER(X_PTR,X,(/ NXY /))
          CALL LCMGPD(KPPAR,'ALPHA-LAW-R',Y_PTR)
          CALL C_F_POINTER(Y_PTR,Y,(/ NXY /))
          CALL LCMGET(KPPAR,'ALPHA-LAW-T',ITYPE)
          CALL LCMGET(KPPAR,'ALPHA-LAW-I',LCUBIC)
          DO I=1,3
            IF(ITYPE.EQ.1) THEN
              CALL ALTERP(LCUBIC,NXY,X,PARAM(I,IAL),.FALSE.,TERP)
              CALL ALTERP(LCUBIC,NXY,X,PARAMI(IAL),.FALSE.,GAR)
              DSUM=0.0D0
              DO J=1,NXY
                DSUM=DSUM+(TERP(J)-GAR(J))*Y(J)
              ENDDO
            ELSE IF((ITYPE.EQ.2).AND.(PARAMI(IAL).LT.PARAM(I,IAL))) THEN
              CALL ALTERI(LCUBIC,NXY,X,PARAMI(IAL),PARAM(I,IAL),TERP)
              DSUM=0.0D0
              DO J=1,NXY
                DSUM=DSUM+TERP(J)*Y(J)
              ENDDO
            ELSE IF((ITYPE.EQ.2).AND.(PARAMI(IAL).GT.PARAM(I,IAL))) THEN
              CALL ALTERI(LCUBIC,NXY,X,PARAM(I,IAL),PARAMI(IAL),TERP)
              DSUM=0.0D0
              DO J=1,NXY
                DSUM=DSUM-TERP(J)*Y(J)
              ENDDO
            ELSE IF(ITYPE.EQ.3) THEN
              DO J=1,NXY
                GAR(J)=SQRT(X(J))
              ENDDO
              GAR1=SQRT(PARAMI(IAL))
              GAR2=SQRT(PARAM(I,IAL))
              IF(GAR1.LT.GAR2) THEN
                CALL ALTERI(LCUBIC,NXY,GAR,GAR1,GAR2,TERP)
                DSUM=0.0D0
                DO J=1,NXY
                  DSUM=DSUM+TERP(J)*Y(J)
                ENDDO
              ELSE IF(GAR2.LT.GAR1) THEN
                CALL ALTERI(LCUBIC,NXY,GAR,GAR2,GAR1,TERP)
                DSUM=0.0D0
                DO J=1,NXY
                  DSUM=DSUM-TERP(J)*Y(J)
                ENDDO
              ELSE
                CYCLE
              ENDIF
            ELSE
              CYCLE
            ENDIF
            RHO(I)=RHO(I)+DSUM
           ENDDO
           DEALLOCATE(GAR,TERP)
         ENDIF
      ENDDO
      DEALLOCATE(PARAM)
      RETURN
      END