1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
*DECK PKINI
SUBROUTINE PKINI(NENTRY,HENTRY,IENTRY,JENTRY,KENTRY)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Collect input information for the point kinetic module.
*
*Copyright:
* Copyright (C) 2017 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s):
* A. Hebert
*
*Parameters: input
* NENTRY number of data structures transfered to this module.
* HENTRY name of the data structures.
* IENTRY data structure type where:
* IENTRY=1 for LCM memory object;
* IENTRY=2 for XSM file;
* IENTRY=3 for sequential binary file;
* IENTRY=4 for sequential ASCII file.
* JENTRY access permission for the data structure where:
* JENTRY=0 for a data structure in creation mode;
* JENTRY=1 for a data structure in modifications mode;
* JENTRY=2 for a data structure in read-only mode.
* KENTRY data structure pointer.
*
*Comments:
* The PKINI: module specification is:
* MAPFL := PKINI: MAPFL :: (descpkini) ;
* where
* MAPFL : name of the \emph{map} object containing fuel regions description
* and global parameter informations.
* (descpkini) : structure describing the input data to the PKINI: module.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NENTRY,IENTRY(NENTRY),JENTRY(NENTRY)
TYPE(C_PTR) KENTRY(NENTRY)
CHARACTER HENTRY(NENTRY)*12
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40,MAXALP=10,MAXTIM=2)
INTEGER ISTATE(NSTATE)
TYPE(C_PTR) IPMAP,JPMAP,KPMAP,JPPAR,KPPAR
REAL LAMBDA,TIMES(MAXTIM)
DOUBLE PRECISION DFLOT
LOGICAL LCUBIC
CHARACTER TEXT12*12,HSIGN*12,HPNAME*12,HSMG*131,HPARAM(MAXALP)*12
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: BETAI,LAMBDAI,X,Y,PARAMI,FPOWER
REAL, ALLOCATABLE, DIMENSION(:,:) :: VAL
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: YINIT
*----
* RECOVER THE FUELMAP
*----
IF(NENTRY.NE.1) CALL XABORT('PKINI: ONE PARAMETER EXPECTED.')
IF((IENTRY(1).NE.1).AND.(IENTRY(1).NE.2))CALL XABORT('PKINI:'
1 //' LCM OBJECT EXPECTED.')
IF(JENTRY(1).NE.1) CALL XABORT('PKINI: SECOND ENTRY IN MODIFICATI'
1 //'ON MODE EXPECTED.')
IPMAP=KENTRY(1)
CALL LCMGTC(IPMAP,'SIGNATURE',12,HSIGN)
IF(HSIGN.NE.'L_MAP') THEN
TEXT12=HENTRY(1)
CALL XABORT('PKINI: SIGNATURE OF '//TEXT12//' IS '//HSIGN//
1 '. L_MAP EXPECTED.')
ENDIF
CALL LCMGET(IPMAP,'STATE-VECTOR',ISTATE)
NB=ISTATE(1)
NCH=ISTATE(2)
NPARM=ISTATE(8)
IF(NPARM.GT.0) JPPAR=LCMGID(IPMAP,'PARAM')
IF(NCH.NE.1) CALL XABORT('PKINI: ONE CHANNEL EXPECTED.')
CALL LCMSIX(IPMAP,'P-KINETIC',1)
*----
* READ INPUT DATA
*----
IMPX=1
NGROUP=0
NALPHA=0
NPTIME=0
EPSILON=1.0E-2
POW0=0.0
LAMBDA=0.0
10 CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.3)CALL XABORT('PKINI: CHARACTER DATA EXPECTED.')
IF(TEXT12.EQ.'EDIT') THEN
* READ PRINTING INDEX
CALL REDGET(ITYP,IMPX,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.1)CALL XABORT('PKINI: INTEGER FOR EDIT EXPECTED.')
ELSE IF(TEXT12.EQ.'POWER') THEN
* Initial power (MW)
CALL REDGET(ITYP,NITMA,POW0,TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR P0 EXPECTED.')
ELSE IF(TEXT12.EQ.'LAMBDA') THEN
* Prompt neutron generation time (s)
CALL REDGET(ITYP,NITMA,LAMBDA,TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR LAMBDA EXPECTED.')
CALL LCMPUT(IPMAP,'LAMBDA',1,2,LAMBDA)
ELSE IF(TEXT12.EQ.'EPSILON') THEN
* Rugge-Kutta EPSILON
CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR EPSILON EXPECTED.')
CALL LCMPUT(IPMAP,'EPSILON',1,2,FLOT)
ELSE IF(TEXT12.EQ.'TIME') THEN
* Set initial time and stage length (s)
CALL REDGET(ITYP,NITMA,T,TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR T EXPECTED.')
CALL REDGET(ITYP,NITMA,DT,TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR DT EXPECTED.')
CALL LCMPUT(IPMAP,'T-VALUE_INIT',1,2,T)
IF(IMPX.GT.0) WRITE(6,100) T,DT
ELSE IF(TEXT12.EQ.'NGROUP') THEN
* Read printing index
CALL REDGET(ITYP,NGROUP,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.1)CALL XABORT('PKINI: INTEGER FOR NGROUP EXPECTED.')
ELSE IF(TEXT12.EQ.'BETAI') THEN
* Delayed neutron fraction
IF(NGROUP.EQ.0)CALL XABORT('PKINI: NGROUP NOT DEFINED.')
ALLOCATE(BETAI(NGROUP))
DO IG=1,NGROUP
CALL REDGET(ITYP,NITMA,BETAI(IG),TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR BETAI EXPECTED.')
ENDDO
CALL LCMPUT(IPMAP,'BETAI',NGROUP,2,BETAI)
ELSE IF(TEXT12.EQ.'LAMBDAI') THEN
* Delayed neutron time constant
IF(NGROUP.EQ.0)CALL XABORT('PKINI: NGROUP NOT DEFINED.')
ALLOCATE(LAMBDAI(NGROUP))
DO IG=1,NGROUP
CALL REDGET(ITYP,NITMA,LAMBDAI(IG),TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR LAMBDAI EXPECTED.')
ENDDO
CALL LCMPUT(IPMAP,'LAMBDAI',NGROUP,2,LAMBDAI)
ELSE IF(TEXT12.EQ.'ALPHA') THEN
IF(NPARM.EQ.0)CALL XABORT('PKINI: NPARM NOT DEFINED.')
JPMAP=LCMLID(IPMAP,'ALPHA',MAXALP)
20 CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.3)CALL XABORT('PKINI: CHARACTER DATA EXPECTED.')
IF(TEXT12.EQ.'ENDA') GO TO 10
NALPHA=NALPHA+1
IF(NALPHA.GT.MAXALP) CALL XABORT('PKINI: MAXALP OVERFLOW.')
DO IPAR=1,NPARM
KPPAR=LCMGIL(JPPAR,IPAR)
CALL LCMGTC(KPPAR,'P-NAME',12,HPNAME)
IF(HPNAME.EQ.TEXT12) GO TO 25
ENDDO
WRITE(HSMG,'(24HPKINI: GLOBAL PARAMETER ,A,16H IS NOT DEFINED ,
1 15HIN THE FUELMAP.)') TEXT12
CALL XABORT(HSMG)
25 KPMAP=LCMDIL(JPMAP,NALPHA)
CALL LCMPTC(KPMAP,'P-NAME',12,TEXT12)
HPARAM(NALPHA)=TEXT12
CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.3)CALL XABORT('PKINI: CHARACTER DATA EXPECTED.')
IF(TEXT12.EQ.'DIRECT') THEN
ITYPE=1
ELSE IF(TEXT12.EQ.'DERIV') THEN
ITYPE=2
ELSE IF(TEXT12.EQ.'SQDERIV') THEN
ITYPE=3
ELSE
CALL XABORT('PKINI: DIRECT OR DERIV EXPECTED.')
ENDIF
CALL REDGET(ITYP,NXY,FLOT,TEXT12,DFLOT)
LCUBIC=.FALSE.
IF(ITYP.EQ.3) THEN
IF(TEXT12.EQ.'LINEAR') THEN
LCUBIC=.FALSE.
ELSE IF(TEXT12.EQ.'CUBIC') THEN
LCUBIC=.TRUE.
ELSE
CALL XABORT('PKINI: LINEAR OR CUBIC EXPECTED.')
ENDIF
CALL REDGET(ITYP,NXY,FLOT,TEXT12,DFLOT)
ENDIF
IF(ITYP.NE.1)CALL XABORT('PKINI: INTEGER FOR NXY EXPECTED(1).')
ALLOCATE(X(NXY),Y(NXY))
DO I=1,NXY
CALL REDGET(ITYP,NITMA,X(I),TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR X EXPECTED(1).')
CALL REDGET(ITYP,NITMA,Y(I),TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR Y EXPECTED(1).')
ENDDO
CALL LCMPUT(KPMAP,'ALPHA-LAW-P',NXY,2,X)
CALL LCMPUT(KPMAP,'ALPHA-LAW-R',NXY,2,Y)
CALL LCMPUT(KPMAP,'ALPHA-LAW-T',1,1,ITYPE)
CALL LCMPUT(KPMAP,'ALPHA-LAW-I',1,5,LCUBIC)
DEALLOCATE(Y,X)
GO TO 20
ELSE IF(TEXT12.EQ.'PTIME') THEN
IF(NALPHA.EQ.0)CALL XABORT('PKINI: NO FEEDBACK PARAMETERS.')
JPMAP=LCMGID(IPMAP,'ALPHA')
CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.3)CALL XABORT('PKINI: CHARACTER DATA EXPECTED.')
30 IF(TEXT12.EQ.'ENDP') GO TO 10
NPTIME=NPTIME+1
IALP=0
DO IAL=1,NALPHA
IALP=IAL
IF(TEXT12.EQ.HPARAM(IAL)) GO TO 40
ENDDO
WRITE(HSMG,'(24HPKINI: GLOBAL PARAMETER ,A,16H IS NOT A FEEDBA,
1 13HCK PARAMETER.)') TEXT12
CALL XABORT(HSMG)
40 KPMAP=LCMDIL(JPMAP,IALP)
LCUBIC=.FALSE.
50 CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.EQ.1) THEN
NXY=NITMA
ALLOCATE(X(NXY),Y(NXY))
DO I=1,NXY
CALL REDGET(ITYP,NITMA,X(I),TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR X EXPECTED(2).')
CALL REDGET(ITYP,NITMA,Y(I),TEXT12,DFLOT)
IF(ITYP.NE.2)CALL XABORT('PKINI: REAL FOR Y EXPECTED(2).')
ENDDO
CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.3)CALL XABORT('PKINI: CHARACTER DATA EXPECTED.')
ELSE IF(ITYP.EQ.3) THEN
IF(TEXT12.EQ.'LINEAR') THEN
LCUBIC=.FALSE.
GO TO 50
ELSE IF(TEXT12.EQ.'CUBIC') THEN
LCUBIC=.TRUE.
GO TO 50
ELSE IF(TEXT12.EQ.'T-DELT') THEN
GO TO 60
ELSE
CALL XABORT('PKINI: LINEAR, CUBIC OR T-DELT EXPECTED.')
ENDIF
60 CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.EQ.1) THEN
NXY=NITMA
CALL REDGET(ITYP,NITMA,T1,TEXT12,DFLOT)
IF(ITYP.NE.2) CALL XABORT('PKINI: REAL DATA EXPECTED(1).')
ELSE IF (ITYP.EQ.2) THEN
NXY=1001
T1=FLOT
ELSE
CALL XABORT('PKINI: INTEGER OR REAL DATA EXPECTED.')
ENDIF
ALLOCATE(X(NXY),Y(NXY))
CALL REDGET(ITYP,NITMA,T2,TEXT12,DFLOT)
IF(ITYP.NE.2) CALL XABORT('PKINI: REAL DATA EXPECTED(2).')
IF(T2.LE.T1) CALL XABORT('PKINI: T2 > T1 EXPECTED.')
DELT=(T2-T1)/REAL(NXY-1)
TT=T1
CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.3)CALL XABORT('PKINI: CHARACTER DATA EXPECTED.')
IF(TEXT12.NE.'P-VALV') CALL XABORT('PKINI: P-VALV EXPECTED.')
CALL REDGET(ITYP,NITMA,GAMMA,TEXT12,DFLOT)
IF(ITYP.NE.2) CALL XABORT('PKINI: REAL DATA EXPECTED(3).')
CALL REDGET(ITYP,NITMA,PINIT,TEXT12,DFLOT)
IF(ITYP.NE.2) CALL XABORT('PKINI: REAL DATA EXPECTED(4).')
CALL REDGET(ITYP,NITMA,PFINAL,TEXT12,DFLOT)
IF(ITYP.NE.2) CALL XABORT('PKINI: REAL DATA EXPECTED(5).')
CALL REDGET(ITYP,NITMA,TB1,TEXT12,DFLOT)
IF(ITYP.NE.2) CALL XABORT('PKINI: REAL DATA EXPECTED(6).')
IF(TB1.LT.T1) CALL XABORT('PKINI: INVALID VALUE OF TB1.')
CALL REDGET(ITYP,NITMA,B1,TEXT12,DFLOT)
IF(ITYP.NE.2) CALL XABORT('PKINI: REAL DATA EXPECTED(7).')
CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.3)CALL XABORT('PKINI: CHARACTER DATA EXPECTED.')
TB2=T2
PFINA2=PFINAL
IF(TEXT12.EQ.'RESET') THEN
CALL REDGET(ITYP,NITMA,PFINA2,TEXT12,DFLOT)
IF(ITYP.NE.2) CALL XABORT('PKINI: REAL DATA EXPECTED(8).')
IF(PFINA2.GT.PFINAL) CALL XABORT('PKINI: INVALID VALUE OF'
> //' PFINA2.')
CALL REDGET(ITYP,NITMA,TB2,TEXT12,DFLOT)
IF(ITYP.NE.2) CALL XABORT('PKINI: REAL DATA EXPECTED(9).')
IF(TB2.LE.TB1) CALL XABORT('PKINI: INVALID VALUE OF TB2.')
CALL REDGET(ITYP,NITMA,B2,TEXT12,DFLOT)
IF(ITYP.NE.2) CALL XABORT('PKINI: REAL DATA EXPECTED(10).')
CALL REDGET(ITYP,NITMA,FLOT,TEXT12,DFLOT)
IF(ITYP.NE.3)CALL XABORT('PKINI: CHARACTER DATA EXPECTED.')
ENDIF
*
ALPHA=2.0*GAMMA/(GAMMA-1.0)
YGAR=PINIT
DO I=1,NXY
X(I)=TT
IF(TT.LE.TB1) THEN
Y(I)=PINIT
ELSE IF(TT.LE.TB2) THEN
Y(I)=MAX(PINIT/((B1*(TT-TB1)+1.0))**ALPHA,PFINAL)
YGAR=Y(I)
ELSE
Y(I)=MAX(YGAR/((B2*(TT-TB2)+1.0))**ALPHA,PFINA2)
ENDIF
TT=TT+DELT
ENDDO
ELSE
CALL XABORT('PKINI: INTEGER OR CHARACTER DATA EXPECTED.')
ENDIF
CALL LCMPUT(KPMAP,'TIME-LAW-T',NXY,2,X)
CALL LCMPUT(KPMAP,'TIME-LAW-P',NXY,2,Y)
CALL LCMPUT(KPMAP,'TIME-LAW-I',1,5,LCUBIC)
DEALLOCATE(Y,X)
GO TO 30
ELSE IF(TEXT12.EQ.';') THEN
GO TO 70
ELSE
CALL XABORT('PKINI: INVALID KEYWORD: '//TEXT12//'.')
ENDIF
GO TO 10
*----
* RECOVER THE INITIAL GLOBAL PARAMETER VALUES
*----
70 ALLOCATE(PARAMI(NALPHA))
IF(IMPX.GT.0) WRITE(6,110)
DO IAL=1,NALPHA
DO IPAR=1,NPARM
KPPAR=LCMGIL(JPPAR,IPAR)
CALL LCMGTC(KPPAR,'P-NAME',12,HPNAME)
IF(HPNAME.EQ.HPARAM(IAL)) GO TO 80
ENDDO
CALL XABORT('PKINI: GLOBAL PARAMETER NOT FOUND.')
80 CALL LCMLEN(KPPAR,'P-VALUE',ILONG,ITYLCM)
IF(ILONG.EQ.0) THEN
WRITE(HSMG,'(33HPKINI: VALUE OF GLOBAL PARAMETER ,A,6H IS NO,
1 20H SET IN THE FUELMAP.)') HPNAME
CALL XABORT(HSMG)
ENDIF
CALL LCMGET(KPPAR,'P-VALUE',PARAMI(IAL))
IF(IMPX.GT.0) WRITE(6,120) IAL,HPNAME,PARAMI(IAL)
ENDDO
CALL LCMPUT(IPMAP,'P-VALUE-INIT',NALPHA,2,PARAMI)
CALL LCMPTC(IPMAP,'P-NAME',12,NALPHA,HPARAM)
*----
* SET INITIAL SOLUTION OF POINT KINETIC EQUATIONS
*----
IF(POW0.EQ.0.0) CALL XABORT('PKINI: INITIAL POWER NOT DEFINED.')
IF(NGROUP.EQ.0) CALL XABORT('PKINI: NGROUP NOT DEFINED.')
ALLOCATE(YINIT(NGROUP+1))
YINIT(1)=POW0
DO I=2,NGROUP+1
YINIT(I)=POW0*BETAI(I-1)/(LAMBDAI(I-1)*LAMBDA)
ENDDO
*----
* SAVE INITIAL CONDITIONS
*----
ISTAGE=1
TIMES(:MAXTIM)=-1.0E30
TIMES(1)=T
TEXT12='PKIN-DAT0001'
IF(IMPX.GT.0) WRITE(6,130) T,TEXT12
CALL LCMSIX(IPMAP,TEXT12,1)
CALL LCMPUT(IPMAP,'P-VALUE',NALPHA,2,PARAMI)
CALL LCMPUT(IPMAP,'Y-VALUE',NGROUP+1,4,YINIT)
CALL LCMPUT(IPMAP,'T-VALUE',1,2,T)
CALL LCMPUT(IPMAP,'DT-VALUE',1,2,DT)
CALL LCMPUT(IPMAP,'I-VALUE',1,1,ISTAGE)
CALL LCMSIX(IPMAP,' ',2)
DEALLOCATE(PARAMI,YINIT,LAMBDAI,BETAI)
CALL LCMPUT(IPMAP,'PKIN-TIMES',MAXTIM,2,TIMES)
*----
* CREATE STATE VECTOR AND SAVE POWER INFORMATION
*----
ISTATE(:NSTATE)=0
ISTATE(1)=ISTAGE
ISTATE(2)=NGROUP
ISTATE(3)=NALPHA
ISTATE(4)=NPTIME
CALL LCMPUT(IPMAP,'STATE-VECTOR',NSTATE,1,ISTATE)
IF(IMPX.GT.0) WRITE(6,140) ISTATE(2:4)
IF(IMPX.GT.1) CALL LCMLIB(IPMAP)
CALL LCMSIX(IPMAP,' ',2)
IF(IMPX.GT.0) WRITE(6,150) POW0
CALL LCMPUT(IPMAP,'REACTOR-PW',1,2,POW0)
CALL LCMLEN(IPMAP,'BUND-PW',ILONG,ITYLCM)
CALL LCMLEN(IPMAP,'AXIAL-FPW',JLONG,ITYLCM)
IF((ILONG.EQ.NCH*NB).AND.(JLONG.EQ.NB)) THEN
ALLOCATE(VAL(NCH,NB),FPOWER(ILONG))
CALL LCMGET(IPMAP,'AXIAL-FPW',FPOWER)
DSUM=0.0
DO IB=1,NB
DSUM=DSUM+FPOWER(IB)
ENDDO
DO ICH=1,NCH
DO IB=1,NB
VAL(ICH,IB)=FPOWER(IB)*POW0*1.0E3/(DSUM*REAL(NCH))
ENDDO
ENDDO
CALL LCMPUT(IPMAP,'BUND-PW',NCH*NB,2,VAL)
DEALLOCATE(FPOWER,VAL)
ENDIF
RETURN
*
100 FORMAT(/34H PKINI: DEFINE INITIAL STAGE TIME=,1P,E12.4,2H S,
1 10H DURATION=,E12.4,2H S)
110 FORMAT(43H PKINI: GLOBAL PARAMETER -- INITIAL VALUES:)
120 FORMAT(1X,I8,A14,3H = ,1P,E12.4)
130 FORMAT(/40H PKINI: SAVE INFORMATION RELATED TO TIME,1P,E12.4,
1 27H S IN LCM DIRECTORY NAMED ',A12,2H'.)
140 FORMAT(/
1 14H STATE VECTOR:/
2 7H NGROUP,I9,39H (NUMBER OF DELAYED PRECURSOR GROUPS)/
3 7H NALPHA,I9,34H (NUMBER OF FEEDBACK PARAMETERS)/
4 7H NPTIME,I9,40H (NUMBER OF TIME-DEPENDENT PARAMETERS))
150 FORMAT(/22H PKINI: INITIAL POWER=,1P,E12.4,3H MW)
END
|